聚丙烯酸钠对蛇纹石浮选的影响及其机理

陈志强, 郑明宇, 彭铁锋

(西南科技大学环境与资源学院,四川 绵阳 621010)

摘要:通过浮选实验、Zeta 电位测试、红外光谱分析和 SEM-EDS 分析等方法,系统地研究了聚丙烯酸钠 (PAAS) 对蛇纹石浮选行为及其表面性质的影响,并探讨其机理。浮选结果表明,添加抑制剂聚丙烯酸钠能 有效抑制蛇纹石上浮,在加入 24.7 mg/L 的聚丙烯酸钠后,蛇纹石的浮选回收率由 36% 下降到 10%; Zeta 电位测试结果表明,聚丙烯酸钠能够显著降低蛇纹石的表面电荷; 红外光谱和 SEM-EDS 分析结果表明聚丙烯酸钠 在蛇纹石表面有明显的化学吸附。机理研究分析表明,聚丙烯酸钠通过与蛇纹石表面上的 Mg²⁺作用对蛇纹石产 生絮凝作用,改变蛇纹石颗粒的分散状态,从而实现对蛇纹石颗粒的有效抑制。

关键词:抑制剂;蛇纹石;聚丙烯酸钠;抑制

doi:10.3969/j.issn.1000-6532.2022.02.018 中图分类号: TD952 文献标志码: A 文章编号: 1000-6532 (2022) 02-0100-05

蛇纹石是一种亲水性矿物,天然可浮性差, 在磨矿后其表面荷正电,因而容易罩盖在表面荷 负电的硫化铜矿物表面,产生"异相凝聚"作用, 阻碍金属矿物与捕收剂接触,从而抑制金属矿物 上浮,恶化浮选过程,并随金属矿物一同进入精 矿产品,影响精矿品位^[1]。同时相关研究表明,蛇 纹石含量的高低直接影响精矿中 MgO 的含量,这 将对后续的冶炼过程产生重要影响^[1-2],为此国内 外研究学者对蛇纹石的有效抑制展开了许多研 究。

目前大部分研究主要是添加分散剂或抑制剂 来抑制蛇纹石颗粒的上浮,降低精矿中 MgO 含 量^[3-4]。先前研究采用糊精、水玻璃、六偏磷酸钠 和 CMC 等药剂抑制或分散有用矿物表面的细蛇纹 石矿泥,但上述药剂在实际使用过程中用量较 大,这样就导致浮选溶液体积增大从而影响浮选 效果^[5-6]。因此,迫切需要开发易得、选择性强、 高性能的粘粒矿物分散剂,特别是含镁硅酸盐矿 物分散剂^[7-8]。

本文以难选硫化铜镍矿中蛇纹石的高效抑制

为研究背景,研究聚丙烯酸钠对蛇纹石抑制的基本思路与方法,并探讨其机理。聚丙烯酸钠作为一种溶于水的阴离子型有机高分子化合物,在水溶液中可以分解为低分子量离子(Na⁺)和聚合物离子,其中含有的—COO—可能与蛇纹石表面上的 Mg²⁺发生化学作用抑制其浮选^[9]。因此,PAAS可以作为蛇纹石的潜在抑制剂。

1 实验

1.1 样品与试剂

蛇纹石的纯矿物样品取自河北省石家庄市。 化学分析结果见表 1,样品纯度均达到实验要求。 实验矿样讲过仔细挑选,破碎,然后在玛瑙研钵 中研磨,最后筛分获得粒径为-74+38 μm 纯矿物用 于浮选实验。将粒径小于 38 μm 的样品进一步研 磨至-2 μm 进行表面分析测试,包括 Zeta 电位分 析、红外光谱和 SEM-EDS 分析。实验所用松油醇 (起泡剂)95% 纯度,=分析级氢氧化钠和盐酸作 为 pH 值调节剂,蒸馏水是 25℃下电阻率为 18.2 mΩ·cm。

收稿日期: 2020-07-15

基金项目:国家自然科学基金资助项目(51874219)

作者简介:陈志强(1994-)男,硕士研究生,矿物加工专业。

通信作者: 彭铁锋(1983-) 男, 博士, 教授, 硕士研究生导师, 研究方向为矿物加工工程。

表 1 蛇纹石化学分析结果/% Table 1 Chemical compositions of serpentine					
Fe	MgO	SiO	Al_2O_3	CaO	其他
2.80	36.82	50.33	0.64	4.35	5.06

1.2 浮选实验

浮选机为叶轮转速为 1700 r/min 的 XFG 型。 将纯化后的矿物颗粒(2.0g)置于 40 mL 的有机 玻璃池中,然后向其中注入 35 mL 去离子水,用 盐酸或氢氧化钠调节悬浮液的 pH 值 3 min,然后 依次添加所需量的抑制剂聚丙烯酸钠并搅拌 3 min。添加发泡剂(松油醇)并搅拌 1 min。在浮 选前,将测量并记录悬浮液的 pH 值。最后浮选 4 min,过滤干燥后称出泡沫产物,根据产物的干 重计算回收率。在同一实验条件下进行了三次并 测量实验结果,取平均值作为最终结果。

1.3 Zeta 电位测试

利用 ZETASIZER 纳米 Zs90 系列(进行了 Zeta 电位测量,探究 PAAS 与矿物颗粒之间的基 本相互作用机理。所有测试均在室温(25±1℃) 下进行,将样品在玛瑙研钵中磨碎至-2 µm 后,将 约 30 mg 的纯化矿物样品加入到装有一定量去离 子水的 100 mL 烧杯中。引入浓度为 1×10⁻³ mol/L 硝酸钾为背景电解质溶液来制备测量所用的悬浮 液,用盐酸或氢氧化钠调整所需 pH 值,然后添 加 PAAS 并调节 10 min,在沉淀 5 min 后记录 pH 值,最后收集上清液进行电位测量。在同一实 验条件下进行三次并测量实验结果,取平均值作 为最终结果。

1.4 红外光谱测试

使用光谱 1(BM版)FT-IR 仪器获得了FT-IR 光谱,表征了PAAS 与矿物相互作用的性质。 光谱波数范围为400~4000 cm⁻¹。首先用玛瑙研钵 将纯化后的矿物颗粒磨至-2 µm。将纯化后的矿物 颗粒 0.5 g 置于以盐酸或氢氧化钠为 pH 值调整剂 的有机玻璃池中。在添加抑制剂 PAAS 后静置 30 min,在将悬浮液进行离心分离后用相同 pH 值 的去离子水洗涤三次,过滤后在 40℃ 的真空干燥 箱中烘干。

1.5 SEM-EDS 分析

取制备好的纯矿物样品 200 mg 放入装有少量 酒精的试管超声分散,然后取适量分散后的悬浮 液,加在载玻片上,待其自然风干,然后将制备 完成的矿物样品进行喷金后放入扫描电子显微镜 下进行矿物形貌观察。

2 结果与讨论

2.1 浮选实验结果

首先对蛇纹石单矿物浮选进行研究,研究了 抑制剂聚丙烯酸钠对蛇纹石的浮选回收率的影 响。结果见图1、2。

由图 1 可知,蛇纹石整体上浮选效果差,同时在整个研究的 pH 值范围内,蛇纹石的浮选回收 率受 pH 值的影响较小。加入 20 mg/L 的聚丙烯酸 钠时,蛇纹石的浮选回收率显著降低,在 pH 值 为 9.2 时,蛇纹石的浮选回收率由 36% 下降到 24%,抑制效果明显。图 2显示了在 pH 值为 9.2时,聚丙烯酸钠的用量对蛇纹石浮选回收率的 影响。由图 2 可知,随着聚丙烯酸钠的用量的增 加,当聚丙烯酸钠的用量为 24.7 mg/L 时,蛇纹石 的浮选回收率由 36% 下降到 10%,此时为蛇纹石 的较大抑制量,因此将 24.7 mg/L 作为聚丙烯酸钠 的较佳用量。

2.2 聚丙烯酸钠对蛇纹石表面 Zeta 电位的影响

吸附剂可以改变矿物的表面性质,从而影响 矿物的浮选行为。Zeta 电位是解释矿物表面与浮 选药剂之间本质相互作用的最有用工具之一。图 3 显示了在 pH 值 2~12 的范围内,蛇纹石颗粒与聚 丙烯酸钠相互作用前后的 Zeta 电位情况。由图 3 可知,蛇纹石的等电点约为 11.2,当 pH<11.2 时,蛇纹石表面荷正电,这与以往的研究结果相 一致^[8,10]。在加入 24.7 mg/L 的 PAAS 后,与蛇纹 石原矿相比,蛇纹石表面 Zeta 电位出现了显著负 移,在所研究的 pH 值范围内荷负电。众所周知, 聚丙烯酸钠为一种溶于水的阴离子型有机高分子 化合物,在水溶液中带负电,说明聚丙烯酸钠吸 附在了蛇纹石表面。

作用前后的 Zeta 电位 Fig.3 Zeta potentials of serpentine at the different pH before

and after reacting with PAAS (PAAS=20 mg/L)

2.3 红外光谱分析

用红外光谱法研究了聚丙烯酸钠对蛇纹石表 面的吸附机理。在聚丙烯酸钠的红外光谱图中, 3422 cm⁻¹处的峰为羟基的伸缩振动峰,2926 cm⁻¹ 处的峰为—CH₃伸缩振动峰,1638 和 1114 cm⁻¹ 处的峰为分别为羧基的不对称和对称伸缩振动 峰。

用红外光谱法进一步研究了聚丙烯酸钠对蛇

纹石表面的吸附机理。图 4 显示了经过 PAAS 处理前后蛇纹石的红外光谱。对于裸蛇纹石,观察到 3692 cm⁻¹处的吸附带,表明-OH 的拉伸^[11]。 984 cm⁻¹处的吸附带是由 Si-O 的拉伸振动引起的,611 cm⁻¹处出现 Mg-O 的面外弯曲振动。在蛇纹石与 PAAS 作用后,在 1628 cm⁻¹处出现了新的吸收峰,与 PAAS 光普中 1638 cm⁻¹处的羧基吸收峰相比,向低频端移动了 10.0 cm⁻¹,说明 PAAS 在利蛇纹石表面发生了化学吸附,可能是 PAAS 上的羧基与蛇纹石表面的镁生成了螯合产物^[12]。

2.4 SEM-EDS 分析

为了进一步观察蛇纹石与聚丙烯酸钠作用前 后的变化情况,利用 SEM-EDS 分析手段观察蛇纹 石表面形貌和元素变化情况。蛇纹石样品经过聚 丙烯酸钠处理前后的 SEM-EDS 分析结果见图 5, 从图 5 可以看到,对于未处理的蛇纹石表面只检 测到 O、Mg、Si、Fe 和 Ca,在蛇纹石经过聚丙烯 酸钠处理后,检测出 0.34%的 Na,Mg 的相对原 子浓度从 29.05% 下降到 23.65%,说明 PAAS 吸 附在蛇纹石表面,Mg 离子从蛇纹石表面溶解。众 所周知,蛇纹石表面带正电荷主要是来源于羟基 的优先溶解。聚丙烯酸钠上的羧基与 Mg 生成螯合 产物,加速 Mg 从蛇纹石表面的溶解。聚丙烯酸钠 溶于水中带负电荷,当其吸附在蛇纹石表面后, 降低了蛇纹石表面电位,解释了图 3 的实验结 果。

综上所述,聚丙烯酸钠通过化学作用吸附在 蛇纹石表面,使其表面性质发生改变,抑制其浮

图 5 蛇纹石样品的 SEM-EDS 分析

选,减少其对精矿产品质量的影响。

3 结论

本文利用抑制剂 PAAS 实现了对蛇纹石的有 效抑制。根据浮选实验结果,进行了 zeta 电位测 定、红外光谱和 SEM-EDS 分析,表明聚丙烯酸钠 的可行性、高效性。

聚丙烯酸钠是蛇纹石的有效抑制剂,当用量为 24.7 mg/L 时,蛇纹石的浮选回收率由 36% 下降到 10%,抑制效果明显;蛇纹石表面 Zeta 电位的改变是有效抑制蛇纹石颗粒的根本原因;红外光谱和 SEM-EDS 综合分析表明,聚丙烯酸钠主要通过化学作用吸附在蛇纹石表面,使其表面 Zeta 电位显著负移,消除/降低蛇纹石与金属硫化矿物之间由于电性相反产生的"异相凝聚"。这样能够消除/降低浮选过程中蛇纹石对精矿产品产生的不利影响,使产品符合生产要求。

参考文献:

[1] 龙涛. 硫化铜镍矿浮选中镁硅酸盐矿物强化分散—同步 抑制的理论及技术研究 [D]. 长沙: 中南大学, 2012.

LONG T. Study on the theory and technology of the enhanced dispersion and synchronous inhibition of magnesium silicate minerals in the flotation of Cu-Ni sulfide [D]. Changsha: Central South University, 2012.

[2] 廖凯. 包钢不同生产工艺的镁质球团矿试验研究 [D]. 呼和浩特: 内蒙古科技大学, 2014.

LIAO K. Experimental study on magnesium pellet of Baotou Steel with different production processes [D]. Hohhot: Inner Mongolia University of Science and Technology, 2014.

[3] 冯博,朱贤文,彭金秀. 羧甲基纤维素对微细粒蛇纹石的 絮凝及抑制作用[J]. 硅酸盐通报, 2016, 35(5):1367-1371.

FENG B, ZHU X W, PENG J X. Flocculation and inhibition of carboxymethyl cellulose on fine serpentine[J]. Chinese journal of silicate, 2016, 35(5):1367-1371.

[4] 熊学广. 利用络合剂—抑制剂组合降低金川镍矿精矿中

氧化镁含量研究 [D]. 武汉: 武汉理工大学, 2013.

XIONG X G. Study on the reduction of magnesium oxide content in Jinchuan nickel concentrate by complexationinhibitor combination [D]. Wuhan: Wuhan University of Technology, 2013.

[5] Chen Y, Zhang G, Shi Q, et al. Utilization of tetrasodium iminodisuccinate to eliminate the adverse effect of serpentine on the flotation of pyrite[J]. Minerals Engineering, 2020(150):106235.

[6] D Liu, G Zhang, G Huang, Y Gao, M Wang, The flotation separation of pyrite from serpentine using lemon yellow as selective depressant, Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2019(581): 25-33

[7] Tao Long, Xiaotao Huang, Wei Xiao. The effect of surface charge on the separation of pyrite from serpentine by flotation[J]. MDPI, 2019, 9(10):29-47.

[8] Guangjiu Pan, Guofan Zhang, Qing Shi, Wei Chen. The effect of sodium alginate on chlorite and serpentine in chalcopyrite flotation[J]. MDPI, 2019, 9(3):123-136.

[9] 曹永丹, 曹钊, 张亚辉等. Cu(II)、Ni(II)离子在蛇纹石 表面的吸附及对其浮选的影响[J]. 工程科学学报, 2016, 38(4):461-467.

CAO Y D, CAO Z, ZHANG Y H, et al. Cu(II), Ni (II) ion in the serpentine surface adsorption and the effect on the flotation of[J]. Journal of engineering science, 2016, 38(4):461-467.

[10] B Feng, W Zhang, Y Guo, T Wang, G. Luo, H. Wang, G.He, The flotation separation of galena and pyrite using serpentine as depressant, Powder Technology 2019(342): 486-490.

[11] Y Chen, G Zhang, Q Shi, D Liu, Effect of chlorite on the flotation of pyrrhotite and its implications for elimination by different methods, Separation Science and Technology 2019(54): 1411-1419.

[12] 李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用 机理分析[J]. 矿产综合利用, 2016(4):52-55.

LI Z H, HAN Y X, LI Y J, et al. Analysis on the mechanism of action of sodium hexametaphosphate on serpentine[J]. Multipurpose Utilization of Minerals, 2016(4):52-55.

Effect and Mechanism of Sodium Polyacrylate on Flotation of Serpentine

Chen Zhiqiang, Zheng Mingyu, Peng Tiefeng

(School of Environment and Resource, Southwest University of Science and Technology,

Mianyang, Sichuan, China)

Abstract: Effect of sodium polyacrylate (PAAS) on the flotation and surface properties of serpentine was studied systematically by means of flotation test, Zeta potential test, Infrared spectral (IR) and SEM-EDS analysis. The flotation results showed that the addition of the depressant sodium polyacrylate could effectively depress the flotation of serpentine, and the recovery of serpentine decreased from 36% to 10% after the addition of 24.7 mg/L sodium polyacrylate. Zeta potential test results showed that sodium polyacrylate could significantly reduce the surface charge of serpentine.Infrared spectral (IR) and SEM-EDS analysis showed that sodium polyacrylate had obvious chemical adsorption on serpentine surface.The mechanism analysis shows that sodium polyacrylate can flocculate serpentine by interacting with the Mg²⁺ on the serpentine surface, and change the dispersion state of serpentine particles, thus effectively depressing the serpentine particles.

Keywords: Depressant; Serpentine; PAAS; Depress