卜义夫',刘思乐',李磊',田川',张延祥',王思祺'

(1. 沈阳科技学院 化学与化工系,辽宁 沈阳 110167;2. 山东中城宏业矿业技术有限公司,山东 烟台 265400)

摘要:为实现对选矿废水中残留的浮选剂丁基黄药的降解去除,以TiO₂和3-氨基1,2,4-三唑为原料,通过超声分散结合直接热聚合法制备了富氮石墨相氮化碳 (g-C₃N₅)负载TiO₂复合光催化剂 (TiO₂/g-C₃N₅),采用XRD、TEM、UV-vis DRS、PL等表征手段对TiO₂/g-C₃N₅复合光催化剂的晶型、形貌以及光学性质进行了表征,并将其应用于丁基黄药(SBX)溶液的光催化降解,探究了催化剂投加量、SBX溶液初始浓度以及 pH 值对光催化降解性能的影响,并对TiO₂/g-C₃N₅复合光催化剂的循环稳定性进行了考查。结果表明,TiO₂颗粒均匀分散在 g-C₃N₅纳米片上,增加了活性位点的数量,异质结的形成提高了其对可见光的响应,扩展了其光谱范围,促进了光电子-空穴的分离,提高了其光催化活性;在 pH=7、催化剂投加量 50 mg、SBX溶液初始浓度55 mg/L条件下,光照 5 h,TiO₂/g-C₃N₅复合光催化剂对SBX溶液的光催化降解率达到了99.98%,同时其具有良好的稳定性。

关键词: TiO₂/g-C₃N₅;选矿废水;丁基黄药;复合光催化剂;光催化降解
 doi:10.3969/j.issn.1000-6532.2025.02.021
 中图分类号: TD989;TQ034 文献标志码: A 文章编号: 1000-6532 (2025) 02-0153-07

引用格式: 卜义夫,刘思乐,李磊,等.TiO₂/g-C₃N₅的制备及对选矿废水中丁基黄药的降解[J].矿产综合利用, 2025,46(2):153-159.

BU Yifu, LIU Sile, LI Lei, et al. Preparation of $TiO_2/g-C_3N_5$ and degradation of butyl xanthate in mineral processing wastewater[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 153-159.

近年来,与选矿相关的环境问题受到了越来 越多的关注^[1-2]。黄药是一种常见的矿物浮选剂, 其对重金属硫化物具有良好的富集作用^[3-4]。选矿 废水中残留的黄药如果得不到有效的处理,会对 环境产生一定的污染。目前,常常利用物理吸 附、混凝沉淀、生物降解、化学氧化等方法处理 含有黄药的选矿废水^[5-7],但处理的效率低、易产 生二次污染^[8]。光催化氧化法具有工艺简单、不易 产生二次污染、对有机污染物降解彻底、绿色环 保等特点^[9-11],可以实现对选矿废水中含有的黄药 高效降解。

富氮石墨相氮化碳 (g-C₃N₅) 具有化学性质稳 定、绿色环保、可见光响应能力强等优点^[12],是 一种优异的光催化材料,近年来,渐渐的受到研 究学者的关注^[13]。值得注意的是,目前应用最为 广泛的光催化材料是二氧化钛 (TiO₂),其具有化学 性质稳定、合成简单、紫外光响应能力强等优 点,但光电子-空穴的快速复合极大的限制了其光 催化性能^[14-16]。研究表明,将 TiO₂ 负载在载体上 可以有效提高其光催化性能,g-C₃N₅ 具有典型的

收稿日期: 2022-06-23

基金项目:国家级大学生创新训练计划项目(202213621001);沈阳科技学院科学研究重点项目(ZD-2021-04);山东中城宏业矿业技术有限公司《黄金冶炼贫液及氰化尾渣资源回收和无害化处理技术研究与应用》项目(ZCHY-2021-01) 作者简介: 卜义夫(2001-),男,硕士,主要从事石墨相光催化材料的改性及开发工作。

通信作者:刘思乐(1986-),女,硕士,副教授,主要从事先进能源技术、资源综合利用及化工过程的开发与强化工作。

二维纳米片结构^[17],是作为 TiO_2 载体的良好材料,同时 $g-C_3N_5$ 具有优于 TiO_2 的光催化性能, TiO_2 和 $g-C_3N_5$ 之间可以耦合形成异质结,可以极大的提高其光催化性能^[18]。

本文通过超声分散结合直接热聚合的方法制 备了g-C₃N₅负载TiO₂复合光催化剂(TiO₂/g-C₃N₅), 采用XRD、TEM、UV-vis DRS、PL等表征手段 对其进行了表征,以丁基钠黄药(SBX)为模拟污 染物,研究了其对SBX溶液的光催化性能,为选 矿废水中黄药的光催化降解提供了理论依据。

1 实 验

1.1 原料

3-氨基 1,2,4-三唑、无水乙醇、钛酸四丁酯、 冰醋酸、十六烷基三甲基溴化铵;丁基钠黄药; 以上均为分析纯。氮气,99%;去离子水为实验室 自制。

1.2 催化剂的制备

1.2.1 g-C₃N₅的制备

将 3.0 g 的 3-氨基 1,2,4-三唑倒入坩埚中,将坩 埚放入马弗炉中,以 10 ℃/min 的升温速率升温至 530 ℃,保温 3 h,冷却至室温,即制得 g-C₃N₅。 1.2.2 TiO₂ 的制备

将 5 mL 去离子水与 15 mL 无水乙醇互溶,滴 加 8 mL 冰醋酸调节 pH 值,加入 0.05 g 十六烷基 三甲基溴化铵,磁力搅拌 30 min,缓慢滴入 15 mL 钛酸四丁酯溶液 (V钛酸四丁酯:V无水乙 醇=1:2),继续磁力搅拌 30 min,超声分散 30 min, 将得到的溶液倒入聚四氟乙烯内衬的高压水热反 应釜中,150 ℃ 恒温加热 18 h,自然冷却,离心 分离,使用去离子水和无水乙醇对分离得到的沉 淀物交替洗涤三次,将洗涤后的沉淀放入干燥箱 中 85 ℃ 干燥 12 h,即制得 TiO₂。

1.2.3 TiO₂/g-C₃N₅的制备

将 0.5 g 的 TiO₂ 和 4.8 g 的 3-氨基 1,2,4-三唑 溶于 30 mL 去离子水中,超声分散 30 min, 100 ℃ 干燥,直至除去水分,将得到的粉末放入坩埚 中,将坩埚放入马弗炉中,530 ℃ 保温 3 h,冷却 至室温,即制得 TiO₂/g-C₃N₅ 复合光催化剂。

1.3 催化剂的表征

采用 D8 型 X 射线衍射仪 (XRD) 对催化剂样品 的 晶 型 进 行 表 征 , Cu Kα 靶 、 扫 描 范 围

20=10°~80°; 采用 Model302 型紫外可见漫反射 光谱仪 (UV-vis DRS) 对催化剂样品的可见光吸收 强度进行表征; 采用 F-7100 型瞬态稳态荧光光度 计 (PL) 对催化剂样品的光电子-空穴复合程度进行 表征; 采用 Tundra 型透射电子显微镜 (TEM) 对催 化剂样品的形貌进行观察; 采用 NOVA2200e 型比 表面积及孔径分析仪对催化剂样品的比表面积进 行测定。

1.4 光催化活性的评价

以 SBX 溶液为模拟污染物溶液、500 W 氙 灯为可见光光源、通有冷凝水的夹套烧杯为反 应器,评价 TiO₂/g-C₃N₅ 复合光催化剂对 SBX 溶 液的光催化活性。首先,将 50 mg 的 TiO₂/g-C₃N₅ 复合光催化剂加入到 50 mL 浓度为 55 mg/L 的 SBX 溶液中,调节溶液 pH=7,持续磁力搅拌,置 于黑暗条件下 1 h,使其达到吸附-脱附平衡;打开 氙灯,每隔 1 h使用取样器取样 5 mL,离心分离 取上层清液,使用紫外可见分光光度计对 SBX 在 301 nm 处的吸光度进行测定,根据朗伯-比耳定律 中吸光度与浓度的关系,根据式 (1)计算光催化降 解率:

$$\eta = \frac{A_0 - A_t}{A_0} \times 100\% = \frac{C_0 - C_t}{C_0} \times 100\%$$
(1)

式中: η 为光催化降解率; A_0 为 SBX 溶液的初始 吸光度; A_t 为 SBX 溶液的 t 时刻的吸光度; C_0 为 SBX 溶液的初始浓度; C_t 为 SBX 溶液的 t 时刻的 浓度。

- 2 结果与讨论
- 2.1 XRD 分析

TiO₂、g-C₃N₅以及TiO₂/g-C₃N₅的XRD 见图1。 $g-C_3N_5$ TiO₂/g-C₃N₅ $(200) (211) \\ (105) (204) TiO_2$ (100)(004)10 20 30 50 60 70 80 40 $2\theta/(^{\circ})$ 图 1 催化剂样品的 XRD

从图 1 可以看出,在 20=25.3°、37.7°、48.0° 等处的衍射峰分别对应了锐钛矿相 TiO₂ 国际标准 样卡 (JCPDS No.71-1166) 中的 (100)、(04)、(200) 等 晶 面 , 这 说 明 所 制 备 的 TiO₂ 为 锐 钛 矿 相 TiO₂^[14,16]; g-C₃N₅ 在 2 θ =13.2°、27.7°处出现了 两 个明显的衍射峰, 13.2°处的衍射峰是由三嗪环引 起的, 27.7°处的衍射峰是由三唑环和三嗪环的复 合堆叠引起的^[10,12-13]; TiO₂/g-C₃N₅ 的 XRD 谱图同 时出现了 TiO₂ 和 g-C₃N₅ 的衍射峰, 这说明成功合 成了TiO₂/g-C₃N₅复合光催化剂。

2.2 形貌分析

TiO₂/g-C₃N₅的 TEM(a)、HRTEM(b) 图片以及 TiO₂、g-C₃N₅、TiO₂/g-C₃N₅的比表面积 (c),见图 2。

图 2 TiO₂/g-C₃N₅的TEM(a)、HRTEM(b)及比表面积 (c) Fig.2 TEM (a), HRTEM (b)and BET(c) of TiO₂/g-C₃N₅

从图 2(a) 可以看出, TiO₂ 颗粒均匀的分布在 g-C₃N₅ 纳米片上, 二者结合较好, 增加了活性位 点的数量,有利于异质结的形成,进而提高其光 催化活性;为了进一步对 TiO₂/g-C₃N₅ 进行观察, 采用高分辨率透射电子显微镜 (HRTEM) 对其进行 观察,从图 2(b) 可以明显的观察到 TiO₂ 的晶格条 纹。通常催化剂的比表面积越高,其催化活性越 高,从图 2(c) 可以看出,TiO₂/g-C₃N₅ 的比表面积 高于 TiO₂ 和 g-C₃N₅ 的比表面积,达到了 41.34 m²/g, 进一步说明了二者的复合增加了活性位点的数 量,提高了其光催化活性。

2.3 UV-vis DRS 分析

TiO₂、g-C₃N₅以及TiO₂/g-C₃N₅的UV-visDRS 见图 3。

图 3 催化剂样品的 UV-vis DRS Fig.3 UV-vis DRS spectra of catalyst samples

从图 3 可以看出,纯 TiO,的吸收边界约为

400 nm, 对紫外光具有良好的响应强度; 纯 g- C_3N_5 光谱范围较宽, 对可见光和紫外光均具有良好的响应强度; TiO₂负载在 g- C_3N_5 纳米片上后, 吸收边界约为 365 nm, 与纯 TiO₂ 相比, 发生了明显的红移。原因是, TiO₂ 与 g- C_3N_5 耦合形成异质结, 扩展了光谱范围,提高了其对可见光和紫外光的响应强度, 有利于提高其对光催化活性。

2.4 PL 分析

从图 4 可以看出, TiO₂和 g-C₃N₅的典型荧光 吸收峰强度较高,这说明其光电子-空穴复合率较 高,TiO₂负载在 g-C₃N₅纳米片表面后,其典型荧 光吸收峰强度明显降低,与纯 g-C₃N₅相比,典型 荧光吸收峰发生了明显的红移。原因是,TiO₂与 g-C₃N₅耦合形成异质结,抑制了光电子-空穴的复合,提高了光生载流子的分离效率,提高了其光 催化活性。

2.5 催化剂投加量对光催化性能的影响

TiO₂/g-C₃N₅复合光催化剂投加量对 SBX 溶液的光催化性能的影响见图 5。

图 5 催化剂投加量对 SBX 的光催化性能的影响 Fig.5 Effect of catalyst dosage on photocatalytic performance of SBX

从图 5 可以看出,随着 TiO₂/g-C₃N₅ 复合光催 化剂投加量的增加,其对 SBX 溶液的光催化降解 率呈上升趋势,投加量高于 50 mg 后,其对 SBX 溶液的最终光催化降解率几乎相同,考虑到实际 应用中的成本问题,TiO₂/g-C₃N₅ 复合光催化剂的 适宜投加量为 50 mg。

2.6 初始浓度对光催化性能的影响

TiO₂/g-C₃N₅复合光催化剂对浓度为 55、65、 75、85 mg 以及 95 mg/L 的 SBX 溶液的光催化性 能的影响见图 6。

从图 6 可以看出,随着 SBX 溶液浓度的升高,TiO₂/g-C₃N₅ 复合光催化剂对 SBX 溶液的光催

化降解率呈下降趋势, SBX 溶液初始浓度为 55 mg/L时,可见光照射 5 h,其对 SBX 溶液的光 催化降解率达到较高。原因是,随着 SBX 初始浓 度的增加,溶液中的 SBX 分子数逐渐增多,过量 SBX 分子的覆盖在 TiO₂/g-C₃N₅ 复合光催化剂的表 面,使得活性位点的数量减少,此外,高浓度的 SBX 溶液对可见光具有一定的屏蔽作用,这都导 致了光催化降解率的降低。实际选矿废水中的 SBX 浓度一般为 5~50 mg/L^[19],故 TiO₂/g-C₃N₅ 复 合光催化剂对 SBX 具有良好的光催化降解性能, 这对其实际应用具有重要意义。

2.7 pH 值对光催化性能的影响

TiO₂/g-C₃N₅复合光催化剂对 pH 值为 7、8、 9、10 以及 11 的 SBX 溶液的光催化性能的影响, 见图 7。

从图 7 可以看出,随着 SBX 溶液 pH 值的增大,TiO₂/g-C₃N₅ 复合光催化剂对 SBX 溶液的光催 化降解率逐渐降低,pH=7 时其对 SBX 溶液的光 催化降解率达到了 99.98%,这说明碱性条件不利 于光催化降解 SBX 反应的进行,这一结果与相关 的文献报道一致^[20]。

2.8 正交实验结果分析

为了进一步确定 TiO₂/g-C₃N₅ 光催化降解 SBX 溶液的适宜条件,以 SBX 溶液的光催化降解率为 实验指标,考查了催化剂投加量、SBX 溶液初始 浓度以及 pH 值的影响,采用 L₉(3⁴) 正交实验表进 行正交实验,正交实验因素水平表见表 1。极差分 析表见表 2。

由表2可知,各因素对SBX 溶液光催化降解 率影响程度依次为,催化剂投加量>pH>SBX 溶液 初始浓度,较佳实验条件下为:TiO₂/g-C₃N₅投加

表1 正交实验因素水平							
Table 1 Orthogonal test factor level							
水平	因素a	因素b	因素c				
	催化剂投加量/mg	SBX初始浓度/(mg/L)	pH值				
1	50	55	7				
2	60	75	9				
3	70	95	11				

表 2 极差分析结果

	Table 2	Table 2 Results of range analysis				
相旦	因素		CDV 限級变/0/			
组与	а	b	с	5BA 年/胖/平/ 70		
1	al	b1	c1	99.98		
2	al	b2	c2	97.24		
3	a1	b3	c3	94.19		
4	a2	b1	c2	92.26		
5	a2	b2	c 1	87.35		
6	a2	b3	c3	81.48		
7	a3	b1	c3	83.39		
8	a3	b2	c 1	79.99		
9	a3	b3	c2	85.13		
I $_j/k_j$	97.14	91.88	89.10			
\prod_j / k_j	87.03	88.19	91.54			
III_j/k_j	82.84	86.93	86.35			
D_j	14.30	4.95	5.19			

注: I_j 、 Π_j 、 Π_j 分别为正交实验表中第*j*列水平1、水平2、水 平3所对应的SBX光催化降解率之和; k_j 为正交实验表中第*j*列 同一水平出现的次数; I_j/k_j 、 Π_j/k_j 、 Π_j/k_j 分别为正交实验表 中第*j*列水平1、水平2、水平3所对应的均值; D_j 为第*j*列的极差。

量 50 mg、SBX 溶液初始浓度 55 mg/L、pH=7,此时 SBX 溶液的光催化降解率为 99.98%。

2.9 催化剂的循环稳定性分析

TiO₂/g-C₃N₅复合光催化剂循环使用 5 次光催 化降解 SBX 溶液实验结果见图 8。

图 8 催化剂的循环稳定性实验结果 Fig.8 Cyclic stability test results of catalysts

从图 8 可以看出, TiO₂/g-C₃N₅ 复合光催化剂 循环使用 5 次后其对 SBX 溶液的光催化降解率仍 达到了 90.21%,这说明 TiO₂/g-C₃N₅ 复合光催化 剂具有良好的稳定性,这对其在实际应用中具有 重要意义。

3 结 论

(1) 以 TiO₂ 和 3-氨基 1,2,4-三唑为原料通过 超声分散结合直接热聚合方法制备了复 TiO₂/g-C₃N₅ 合光催化剂,其对 SBX 溶液具有良好的光催 化降解能力。在 pH=7、TiO₂/g-C₃N₅ 投加量 50 mg、 SBX 溶液初始浓度 55 mg/L 时,可见光照射 5 h, TiO₂/g-C₃N₅ 复合光催化剂对 SBX 溶液的光催化降 解率达到了 99.98%。TiO₂/g-C₃N₅ 复合光催化剂循 环使用 5 次后仍具有良好的光催化性能,其具有 良好的稳定性。

(2) TiO₂颗粒均匀分散在 g-C₃N₅纳米片 上,使得活性位点的数量增多,TiO₂与 g-C₃N₅之 间异质结的形成提高了其对可见光的响应强度, 拓宽了光谱范围,抑制了光电子-空穴的复合,促 进了光生载流子的分离,提高了其光催化活性。

参考文献:

[1] 程志红. "双碳目标"下表面改性与新型药剂在低阶煤浮选中的应用[J]. 矿产综合利用, 2022(2):15-21.

CHENG Z H. Surface modification under "double carbon target" and application of new reagents in low-rank coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21.

[2] 陈杜娟, 王志丰, 王婷霞. 某尾矿综合回收选矿实验研 究[J]. 矿产综合利用, 2021(1):104-108.

CHEN D J, WANG Z F, WANG T X. Experimental study on comprehensive recovery and beneficiation of tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(1):104-108.

[3] 刘超,朱琦,哈硕,等.国内黄药废水处理技术研究进展[J].工业水处理,2017,37(9):1-5.

LIU C, ZHU Q, HA S, et al. Research progress on treatment technology of xanthate wastewater in China[J]. Industrial Water Treatment, 2017, 37(9):1-5.

[4] 朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.

ZHU Y M. Development of flotation reagent in 2020[J].

Multipurpose Utilization of Mineral Resources, 2021(2):102-118.

[5] 林小凤, 傅平丰, 邹凤羽, 等. 高级氧化技术降解有机选矿 药剂的研究进展[J]. 金属矿山, 2019(9):1-7.

LIN X F, FU P F, ZOU F Y, et al. Research progress of organic mineral processing agent degradation by advanced oxidation technology[J]. Metal Mine, 2019(9):1-7.

[6] MENG S B, WEN S M, HAN G, et al. Wastewater treatment in mineral processing of non-ferrous metal resources: a review[J]. Water, 2022, 14(5):1-20.

[7] CHEN G Q, CHEN B, YANG X S, et al. Study on treatment of mineral processing wastewater by ozone combined catalytic oxidation[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(4):1-4.

[8] 刘嘉友, 聂倩倩, 俞和胜, 等. 卷心菜状 Bi₂WO₆ 光催化降 解黄药废水[J]. 金属矿山, 2020(2):122-128.

LIU J Y, NIE Q Q, YU H S, et al. Photocatalytic degradation of xanthate wastewater by cabbage-like $Bi_2WO_6[J]$. Metal Mine, 2020(2):122-128.

[9] 谢娟, 夏润南, 赵树春, 等. ZnO/煤矸石复合光催化剂的制 备与性能研究[J]. 矿产综合利用 2019(4): 126-129+116.

XIE J, XIA R N, ZHAO S C, et al. Preparation and properties of ZnO/coal gangue composite photocatalysts [J]. Multipurpose Utilization of Mineral Resources, 2019(4): 126-129.

[10] ZHANG M H, HAN N, FEI Y W, et al. $TiO_2/g-C_3N_4$ photocatalyst for the purification of potassiumbutyl xanthate in mineral processing wastewater[J]. Journal of Environmental Management, 2021, 297:1-11.

[11] 李慧婉, 和东芹, 谢娟, 等. SnO₂-ZnO/煤矸石复合物光催 化降解有机磷农药的性能研究[J]. 矿产综合利用, 2020(4):185-190.

LI H W, HE D Q, XIE J, et al. Study on the photocatalytic degradation of organophosphorus pesticides by SnO₂-ZnO/coal gangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4):185-190.

[12] HU C C, LIN Y H, Yoshida Masaaki, et al. Influence of phosphorus doping on triazole-based $g-C_3N_5$ Nano sheets for enhanced photoelectrochemical and photocatalytic performance[J]. ACS applied materials & interfaces, 2021, 13(21):24907-24915.

[13] PENG C, HAN L X, HUANG J M, et al. Comprehensive investigation on robust photocatalytichydrogen production over $C_3N_5[J]$. Chinese Journal of Catalysis, 2022, 43(2):410-420.

[14] 戴煜, 郭厦蕾, 陈典, 等. TiO₂/大理石复合光催化剂制备 及性能研究[J]. 矿产综合利用, 2020(5):179-185.

DAI Y, GUO X L, CHEN D, et al. Preparation and properties of TiO₂/marble composite photocatalyst[J]. Multipurpose Utilization of Mineral Resources, 2020(5):179-185.

[15] LI Z Z, WANG S J, WU J X, et al. Recent progress in defective TiO_2 photocatalysts for energy and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2022, 156:111980.

[16] 高平强,魏建雄,陈嘉,等.TiO₂/改性煤矸石复合光催化 材料的制备及其去除水体中苯酚[J].矿产综合利用, 2021(6):73-80.

GAO P Q, WEI J X, CHEN J, et al. Preparation of TiO₂/coal gangue composite photocatalyst and its application in phenol removal from water[J]. Multipurpose Utilization of Mineral Resources, 2021(6):73-80.

[17] 彭聪, 韩利晓, 黄金铭, 等. C₃N₅ 光催化制氢性能的系统
 研究 (英文)[J]. Chinese Journal of Catalysis, 2022, 43(2):
 410-420.

PENG C, HAN L X, HUANG J M, et al. Systematic study on photocatalytic hydrogen production performance of C_3N_5 (English)[J]. Chinese Journal of Catalysis, 2022, 43(2): 410-420.

[18] 崔天伊. 二氧化钛基复合光催化剂的制备及其性能研 究[D]. 阿拉尔: 塔里木大学, 2021.

CUI T Y. Preparation and properties of TiO₂-based composite photocatalyst[D]. Aral: Tarim university, 2021.

[19] 陈运双, 马瑞雪, 蒋潇宇, 等. TiO₂/蒙脱土复合材料光催 化降解丁基黄药性能研究[J]. 金属矿山, 2022(5):212-220.

CHEN Y S, MA R X, JIANG X Y, et al. Study on photocatalytic degradation of butyl xanthate by TiO₂/montmorillonite composite[J]. Metal Mine, 2022(5):212-220. [20] 薛闯, 王舰, 杨壮, 等. 钼离子掺杂 g-C₃N₄ 纳米片光催化

剂降解黄药废水的研究[J]. 金属矿山, 2019(9):189-194.

XUE C, WANG J, YANG Z, et al. Study on degradation of xanthate wastewater by molybdenum ion doped $g-C_3N_4$ nanosheet photocatalyst[J]. Metal Mine, 2019(9):189-194.

Preparation of TiO₂/g-C₃N₅ and Degradation of Butyl Xanthate in Mineral Processing Wastewater

BU Yifu¹, LIU Sile¹, LI Lei², TIAN Chuan¹, ZHANG Yanxiang¹, WANG Siqi¹

(1.Department of Chemistry and Chemical Engineering, Shenyang University of Science and Technology,

Shenyang 110167, Liaoning, China; 2.Shandong Zhongcheng Hongye Mining Technology Limited

Company, Yantai 265400, Shandong, China)

Abstract: In order to achieve the reduction and removal of butyl xanthate, the residual flotation agent in mineral processing wastewater, TiO_2 and 3-amino 1,2,4-triazole were used as raw materials to prepare nitrogen-rich graphite phase carbon nitride (g-C₃N₅) supported TiO₂ composite photocatalyst (TiO₂/g-C₃N₅) by ultrasonic dispersion combined with direct thermal polymerization. The crystal form, morphology and optical properties of $TiO_2/g-C_3N_5$ composite photocatalyst were characterized by XRD, TEM, UV-vis DRS and PL, and it was applied to the photocatalytic degradation of butyl xanthate (SBX) solution. The effects of catalyst dosage, initial concentration of SBX solution and pH value on the photocatalytic degradation performance were investigated, and the cyclic stability of $TiO_2/g-C_3N_5$ composite photocatalyst was investigated. The results show that TiO_2 particles are uniformly dispersed on g-C₃N₅ nanosheets, which increases the number of active sites. The formation of photoelectron-hole and improves its photocatalytic activity. At the conditions of pH=7, catalyst dosage 50 mg, SBX solution initial concentration 55 mg/L, illumination 5 h, the photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic degradation rate of SBX solution by $TiO_2/g-C_3N_5$ composite photocatalytic reached 99.98%, and it had good stability.

Keywords: $TiO_2/g-C_3N_5$; Mineral processing wastewater; Butyl xanthate; Composite photocatalyst; Photocatalytic degradation

(上接第64页)

Industrial Test Research on Stainless Steel Dust with Coal-based Hydrogen Metallurgy for Recycling Purpose

WANG Minghua¹, ZHANG Xiaobing¹, LI Bin², LEI Pengfei¹, YU Huangming¹, ZHANG Hongjun¹ (1.Hydrogen Metallurgical Research Institute, Jiuquan Iron and Steel (Group) Co., Ltd., Jiayuguan 735100, Gansu, China; 2.Lanzhou University of Technology, State Key Laboratory for Advanced Processing and Reuse of Nonferrous Metals Jointly Established by the Province and

the Ministry, Lanzhou 730030, Gansu, China)

Abstract: The self-developed coal-based hydrogen metallurgical technology and coal-based hydrogen metallurgical rotary kiln industrial test device were used to carry out the industrial test on stainless steel dust with coal-based hydrogen metallurgy in the rotary kiln for harmless and recycling purpose. The metallization ratio of nickel, iron, and chromium are 100%, 91.24% and 86.18%, respectively, at the conditions of hydrogen metallurgical reduction temperature of 1 250 °C and the time in the kiln of about 3 h, and all the produced materials of which the indexes are lower than the standard limit of extraction toxicity identification. Thermodynamic analysis was carried out for coal-based hydrogen metallurgy process on stainless steel dust. It forms a harmless and recycling process package for stainless steel dust, including coal-based hydrogen metallurgical rotary kiln which is the core technology, dry cooling, dry magnetic separation, gravity jig separation and other main processes.

Keywords: Coal-based hydrogen metallurgy; Stainless steel dust; Rotary kiln