• 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020-2024科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, Georef,JST,
    CA数据库收录期刊
Hong Qiuyang, Li Meirong, Li Bo, Liang Dongyun, Liu Chao, Zhang Hailiang. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.009
Citation: Hong Qiuyang, Li Meirong, Li Bo, Liang Dongyun, Liu Chao, Zhang Hailiang. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.009

Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore

More Information
  • Received Date: August 25, 2020
  • Revised Date: October 25, 2020
  • Published Date: December 24, 2020
  • Based on the process mineralogy of a vanadium-titanium iron ore, the mineralogical factors affecting the development and utilization of the ore were analyzed. The results show that the valuable elements of ore are vanadium, titanium and iron, all of which are high grade, and the impurity elements are aluminum and silicon; the main iron and titanium minerals are magnetite-martite-titanohematite, limonite and ilmenite. The iron and titanium minerals are not closely related to gangue, and the density and magnetism are quite different, so they are easy to be separated from gangue. Because of the complicated associated interface between iron and titanium minerals, the variable magnetism and the overlapping magnetism ranges, it is difficult to effectively separate iron minerals from titanium minerals by using conventional magnetic separation processes. By magnetization roasting-magnetic separation process, the theoretical grade of iron and vanadium is Fe 64.23% and V2O5 1.29% with the theoretical recovery being 60.29% and 72.54% respectively if they are recovered from magnetite-martite-titanohematite; the theoretical grade of titanium is TiO2 52.70% with the theoretical recovery being about 65% if the titanium is recovered from ilmenite.

  • [1]
    郭宇峰. 钒钛磁铁矿固态还原强化及综合利用研究[D]. 长沙:中南大学, 2007
    [2]
    吕超. 攀枝花钒钛磁铁矿精矿制备中钛渣的技术和理论研究[D]. 昆明:昆明理工大学, 2017
    [3]
    张明博. 低钛高炉渣资源化利用研究[D]. 北京:北京科技大学, 2017
    [4]
    张以敏. 高铬型钒钛磁铁矿还原钠化熔分耦合新技术研究[D]. 北京:中国科学院大学, 2018
    [5]
    廖鑫. 钛铁矿氧化球团制备及其冶炼钛渣工艺研究[M]. 成都:成都理工大学, 2019
    [6]
    Jordens A, Marion C, Grammatikopoulos T, Waters K.E. Understanding the effect of mineralogy on muscovite flotation using QEMSCAN. [J] International Journal of Mineral Processing, 2016 (155): 6-12.
    [7]
    Rolf F, Ying G, Debra B, Kurt M, Modern SEM-based mineral liberation analysis. [J] International Journal of Mineral Processing, 2007 (84):310~320.
    [8]
    Ying G. Automated scanning electron microscope based mineral liberation analysis. [J]Journal of Minerals and Materials Characterization and Engineering, 2003 (2):33-41.
    [9]
    于宏东,齐涛,王丽娜,陈德胜,赵宏欣,曲景奎,何明明.临沂低品位钛矿的矿物组成及铁钛元素的分布状态[J]. 过程工程学报, 2015, 15 (5): 813-818
    [10]
    梁冬云,李波. 稀有金属矿工艺矿物学[M]. 北京:冶金工业出版社, 2015:18-20
    [11]
    Paul Duuring, Steffen G. Hagemann, Carsten Laukamp, Laura Chiarelli. Supergene modification of magnetite and hematite shear zones in banded iron-formation at Mt Richardson, Yilgarn Craton, Western Australia. [J]Ore Geology Review, 2019 (111):1-16.
    [12]
    洪秉信,傅文章,刘飞燕. 钛铁矿固溶体分解结构和磁性研究[J]. 矿产综合利用, 2010(6): 22-24
    [13]
    罗小军. 攀枝花钒钛磁铁矿矿床韵律层特征及其研究意义[D]. 成都:成都理工大学, 2003
    [14]
    王振阳. 海砂矿钛铁资源分级利用研究[D].北京:北京科技大学, 2017
    [15]
    韩跃新,孙永升,李艳军,高鹏. 我国铁矿选矿技术最新进展[J]. 金属矿山, 2015(2): 1-11

Catalog

    Article views (151) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return