• 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020-2024科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, Georef,JST,
    CA数据库收录期刊
WANG Peng, LIU Yanli. Effect of MO collector on coal gasification fine slag flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 9-14. DOI: 10.3969/j.issn.1000-6532.2024.05.002
Citation: WANG Peng, LIU Yanli. Effect of MO collector on coal gasification fine slag flotation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 9-14. DOI: 10.3969/j.issn.1000-6532.2024.05.002

Effect of MO Collector on Coal Gasification Fine Slag Flotation

More Information
  • Received Date: May 31, 2022
  • This is an article in the field of mineral processing engineering. Comprehensive utilization of coal gasification fine slag is a major development direction at present. Coal gasification fine slag has developed pores and rich oxygen groups, which makes it difficult for kerosene and other traditional collectors to recover the residual carbon. Flotation experiments were carried out on the compound MO of methyl oleate and kerosene, and the mechanism was discussed by means of laser particle size analyzer, FTIR, contact angle, and XPS. The results show that when the dosage of MO is increased to 16 kg/t, the loss on ignition of tailings is reduced to 7.12%, and the recovery of combustible is more than 95.63%. MO introduced polar group ester group, which can reduce the interfacial tension of kerosene surface, enhance the dispersing effect of collector in water, so as to increase the contact area and collision probability of carbon residue particles and collector droplet, and improve the hydrophobicity and floatability of carbon residue particles. The hydrophobicity of carbon residue was analyzed by contact angle and the relationship between the hydrophobicity and the rate of fine mineral was explained. XPS shows that the interaction between MO and oxygen-containing functional groups on the surface of the carbon residue can form an effective covering layer at the hydrophilic water level point of the carbon residue, which makes the hydrophobic part outward, reduces the hydration, increases the contact probability, and increases the surface hydrophobicity of the coal gasification fine slag. The use of MO agent provides a new way for comprehensive utilization of solid waste from coal gasification.

  • [1]
    程志红. “双碳目标”下表面改性与新型药剂在低阶煤浮选中的应用[J]. 矿产综合利用, 2022(2):15-21.CHENG Z H. Application of Surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003

    CHENG Z H. Application of Surface modification and new reagents in low-rank coal flotation under "double carbon target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003
    [2]
    王学斌, 于伟, 张韬, 等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术, 2021, 27(3):61-69.WANG X, YU W, ZHANG T, et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology, 2021, 27(3):61-69.

    WANG X, YU W, ZHANG T, et al. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technology, 2021, 27(3):61-69.
    [3]
    Guo F, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585:124148. doi: 10.1016/j.colsurfa.2019.124148
    [4]
    肖永丰. 粉煤灰提取氧化铝方法研究[J]. 矿产综合利用, 2020(4):156-162.XIAO Y F. Study on the methods of leaching alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    XIAO Y F. Study on the methods of leaching alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027
    [5]
    Cao X, Kong L, Bai J, et al. Effect of water vapor on viscosity behavior of coal slags with high silicon-aluminum level under gasification condition[J]. Fuel, 2020, 260:116351. doi: 10.1016/j.fuel.2019.116351
    [6]
    张旭, 于昭仪, 何亚群, 等. 吡啶类离子液体在褐煤反浮选中的应用[J]. 矿产综合利用, 2022(2):116-120.ZHANG X, YU S Y, HE Y Q, et al. Application of pyridyl ionic liquids in the reverse flotation of shengli lignite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):116-120. doi: 10.3969/j.issn.1000-6532.2022.02.021

    ZHANG X, YU S Y, HE Y Q, et al. Application of pyridyl ionic liquids in the reverse flotation of shengli lignite[J]. Multipurpose Utilization of Mineral Resources, 2022(2):116-120. doi: 10.3969/j.issn.1000-6532.2022.02.021
    [7]
    卢天燊, 邓政斌, 刘志红, 等. 高灰难选煤泥分级浮选降灰实验研究[J]. 矿产综合利用, 2022(2):142-149.LU T J, DENG Z B, LIU Z H, et al. Experimental study on deashing of high ash and refractory coal slime by classification flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026

    LU T J, DENG Z B, LIU Z H, et al. Experimental study on deashing of high ash and refractory coal slime by classification flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026
    [8]
    张帅, 李亚, 牛艳萍, 等. 某片麻岩鳞片石墨矿浮选实验研究[J]. 矿产综合利用, 2022(2):111-115.ZHANG S, LI Y, NIU Y P, et al. Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):111-115. doi: 10.3969/j.issn.1000-6532.2022.02.020

    ZHANG S, LI Y, NIU Y P, et al. Flotation test of a gneiss scale graphite ore[J]. Multipurpose Utilization of Mineral Resources, 2022(2):111-115. doi: 10.3969/j.issn.1000-6532.2022.02.020
    [9]
    梁艳男, 王海楠, 周若谦, 等. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022(2):158-166.LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029

    LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029
    [10]
    朱一民. 2020 年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118.ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019
    [11]
    胡俊阳. 北方某煤气化炉渣的综合利用研究[D]. 绵阳: 西南科技大学, 2018.HU J Y. Study on the comprehensive utilization of a coal gasification slag in the north[J]. Mianyang: Southwest University of Science and Technology, 2018.

    HU J Y. Study on the comprehensive utilization of a coal gasification slag in the north[J]. Mianyang: Southwest University of Science and Technology, 2018.
    [12]
    Wang W, Liu D, Tu Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel, 2020, 278:118195. doi: 10.1016/j.fuel.2020.118195
    [13]
    王晓波, 符剑刚, 赵迪, 等. 煤气化细渣载体浮选提质研究[J]. 煤炭工程, 53(1): 155-159.WANG X B, FU J G, ZHAO D, et al. Study on flotation and quality improvement of gasified fine slag carrier[J]. Coal Engineering, 53(1): 155-159

    WANG X B, FU J G, ZHAO D, et al. Study on flotation and quality improvement of gasified fine slag carrier[J]. Coal Engineering, 53(1): 155-159
    [14]
    Fan G, Zhang M, Peng W, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. Journal of Cleaner Production, 2021, 286:124943. doi: 10.1016/j.jclepro.2020.124943
    [15]
    Shi D, Zhang J, Hou X, et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of The Total Environment, 2022, 818:151856. doi: 10.1016/j.scitotenv.2021.151856
    [16]
    Zhou W, Jiang L, Liu X, et al. Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022: 128259.
    [17]
    包永红, 张义, 陈警卫, 等. 脉石矿物在细粒煤浮选过程的夹带回收特性研究[J]. 矿产综合利用, 2021(6):20-25.BAO Y H, ZHANG Y, CHEN J W, et al. Study on entrainment recovery characteristics of gangue minerals in flotation process of fine coal[J]. Multipurpose Utilization of Mineral Resources, 2021(6):20-25. doi: 10.3969/j.issn.1000-6532.2021.06.004

    BAO Y H, ZHANG Y, CHEN J W, et al. Study on entrainment recovery characteristics of gangue minerals in flotation process of fine coal[J]. Multipurpose Utilization of Mineral Resources, 2021(6):20-25. doi: 10.3969/j.issn.1000-6532.2021.06.004
    [18]
    Miao Z, Guo Z, Qiu G, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50:101585. doi: 10.1016/j.jcou.2021.101585
  • Related Articles

    [1]ZHANG Rui, LU Jianguo, YAO Huayan, LI Yunze, LU Junxiong, LIU Shuaiting. Preparation and Physico-mechanics Properties of Non-sintered Ceramsite from Iron Tailing Fly Ash[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6): 21-26. DOI: 10.3969/j.issn.1000-6532.2024.06.004
    [2]LIU Cheng, ZHOU Yuxiao, REN Liuyi, YANG Siyuan, BAO Shenxu. Preparation and Properties of Fly Ash and Sintering Red Mud-based Geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 133-140. DOI: 10.3969/j.issn.1000-6532.2024.05.019
    [3]LI Mingxi, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, DAI Huixin, YANG Bin. Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 27-34. DOI: 10.3969/j.issn.1000-6532.2024.04.004
    [4]XU Hongda, SUN Tichang, WU Shichao, LIAN Xiaoxiao, HAN Wenli, DENG Zongyi. Research Progress on the Effects of Reducing Agents and Dephosphorization Agents on Direct Reduction-Magnetic Separation of High Phosphorus Oolitic Hematite[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 176-184. DOI: 10.3969/j.issn.1000-6532.2024.02.029
    [5]Li Yonghui, Xian Yuanhua, Chen Dexia, Zhong Yi, Wu Xiujie. Process Optimization on Preparation of Composite Portland Cement with Low-grade Pyrite Cinder[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 78-81, 87. DOI: 10.3969/j.issn.1000-6532.2023.03.013
    [6]Wang Hui, Li Zhihong, Fan Minqiang, Gao Jianchuan. Study on Promoting Effect of Carboxylic Acid on Flotation of Low-rank Coal[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 45-51. DOI: 10.3969/j.issn.1000-6532.2023.02.009
    [7]Gu Xiaotian, Zhu Yimin, Liu Jie, Han Yuexin, Ma Yuning. Research on the Application of a New Low-Temperature Collector DGT-P in Qidashan Iron Ore Reverse Flotation Process[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 1-6. DOI: 10.3969/j.issn.1000-6532.2023.02.001
    [8]Deng Xiaoyang, Pei Xinyi, Liu Zituo, Wang Huicheng. Effect of Ammonium Ion Content on Superplasticizer Dosage and Adsorption Property[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 64-69. DOI: 10.3969/j.issn.1000-6532.2022.03.012
    [9]Zhu Yimin. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021, 42(2). DOI: 10.3969/j.issn.1000-6532.2021.02.019
    [10]Chen Bing, Shen Xiaoyi, Gu Huimin, Shan Hongmei, Zhai Yuchun, Ma Peihua. Influence of calcium compounds on NaoH roasting zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2016, 37(3). DOI: 10.3969/j.issn.1000-6532.2016.03.007
  • Cited by

    Periodical cited type(1)

    1. 田晓东,陈智超,侯建. KOH用量对煤气化细灰衍生活性炭理化性质及超级电容器性能的影响. 动力工程学报. 2025(01): 131-140+164 .

    Other cited types(0)

Catalog

    Article views (29) PDF downloads (5) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return