• 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020-2024科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, Georef,
    JST, CA数据库收录期刊

四川省同德石墨矿床地球化学特征及Re-Os同位素定年

陈超, 孔德才, 田小林, 刘治成, 郭宇衡, 吴得强, 文真蓁, 龙波, 郑毅

陈超, 孔德才, 田小林, 刘治成, 郭宇衡, 吴得强, 文真蓁, 龙波, 郑毅. 四川省同德石墨矿床地球化学特征及Re-Os同位素定年[J]. 矿产综合利用, 2023, 44(1): 88-98, 110. DOI: 10.3969/j.issn.1000-6532.2023.01.011
引用本文: 陈超, 孔德才, 田小林, 刘治成, 郭宇衡, 吴得强, 文真蓁, 龙波, 郑毅. 四川省同德石墨矿床地球化学特征及Re-Os同位素定年[J]. 矿产综合利用, 2023, 44(1): 88-98, 110. DOI: 10.3969/j.issn.1000-6532.2023.01.011
Chen Chao, Kong Decai, Tian Xiaolin, Liu Zhicheng, Guo Yuheng, Wu Deqiang, Wen Zhenzhen, Long Bo, Zheng Yi. Geochemical Characteristics and Re-Os isotopic dating of Tongde Graphite Deposit, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 88-98, 110. DOI: 10.3969/j.issn.1000-6532.2023.01.011
Citation: Chen Chao, Kong Decai, Tian Xiaolin, Liu Zhicheng, Guo Yuheng, Wu Deqiang, Wen Zhenzhen, Long Bo, Zheng Yi. Geochemical Characteristics and Re-Os isotopic dating of Tongde Graphite Deposit, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 88-98, 110. DOI: 10.3969/j.issn.1000-6532.2023.01.011

四川省同德石墨矿床地球化学特征及Re-Os同位素定年

基金项目: 四川省政府性投资地质勘查项目“四川省攀枝花市仁和区同德石墨矿普查”DZ202104;四川省自然资源科研项目“四川省晶质石墨成矿条件及分布规律研究”kj-2021-10
详细信息
    作者简介:

    陈超(1993-),男,硕士,工程师,主要从事矿产勘查及成矿作用研究工作

    通讯作者:

    孔德才(1986-),男,学士,高级工程师,主要从事矿产勘查工作

  • 中图分类号: TD11

Geochemical Characteristics and Re-Os isotopic dating of Tongde Graphite Deposit, Sichuan Province

  • 摘要: 攀枝花同德石墨矿床位于扬子板块西缘增生带,本文对矿区矿石和赋矿围岩进行全岩地球化学分析、对矿石进行碳同位素测定、Re-Os同位素测年、对矿石及其赋矿岩石进行了原岩恢复并探讨了成矿环境。研究表明,矿石SiO2为55.65%~61.68%,SiO2/Al2O3比值为4.59~5.42,Ni/Co比值6.23~12.88,富集Ba、Rb、Sr等大离子亲石元素和Nb、Zr、Hf、Th、U等高场强元素。矿石的稀土元素总量ΣREE为149.13×10-6~195.37×10-6,具有弱的Ce负异常和Eu负异常,代表了缺氧的海相沉积环境。矿石中δ13CV-PDB值为-25.0‰~-23.5‰,位于生物成因的有机碳范围内,表明其成矿碳质主要来源于有机物。石墨的Re-Os同位素年龄为983±72 Ma(MSWD=1.7),时代归属为新元古代早期,早于同德周边岩浆岩侵入时代。Re的含量介于27.66×10-9~79.81×10-9,普通Os和187Os的含量分别为0.52×10-9~2.16×10-9、0.28×10-9~0.83×10-9,相对于Re、Os在地壳中的丰度显著富集。187Re/188Os比值为122.9~350.5,Os同位素初始比值187Os/188Os=0.31±0.21。结合野外地质调查对同德地区矿石和赋矿云母石英片岩进行原岩恢复,得出其原岩为沉积岩。
    Abstract: The Tongde Graphite Deposit in Panzhihua is located in the accretionary zone on the western margin of the Yangtze plate. In this paper, the whole rock geochemical analysis, C isotope determination and Re-Os isotope dating of the ore in Tongde graphite mining area are carried out, the original rock of the ore is restored, and the metallogenic environment is discussed. Research shows that the ore SiO2 is 55.65~61.68%, SiO2/Al2O3 ratio is 4.59~5.42, and Ni/Co ratio is 6.23~12.88. It is rich in Ba, Rb, Sr and other large ion lithophile elements and Nb, Zr, Hf, Th, U and other high field strength elements. Total rare earth elements of ore ΣREE is 149.13×10-6~195.37×10-6, with weak Ce negative anomaly and Eu negative anomaly, representing the anoxic marine sedimentary environment. The Carbon isotope δ13CV-PDB in ore is -25.0‰~-23.5‰, which is within the range of biogenic organic carbon, indicating that the ore-forming carbon mainly comes from organic matter. The Re-Os isotopic age of graphite is 983 ± 72 Ma (MSWD=1.7), belonging to the early Neoproterozoic, earlier than the intrusion age of magmatic rocks around Tongde. The content of re is between 27.66×10-9~79.81×10-9, the contents of ordinary Os and 187Os are 0.52 ×10-9~2.16×10-9, 0.28 × 10-9~0.83×10-9,respectively ,it is significantly enriched relative to the abundance of Re and Os in the crust. The 187re/188os ratio is 122.9~350.5, and the initial Os isotope ratio 187Os/188Os=0.31±0.21. Combined with the field geological survey, the original rock of ore and ore bearing mica quartz schist in Tongde area is restored, and it is concluded that the original rock is sedimentary rock.
  • 石墨材料对于军工、科技、化工、新能源、高端装备制造等领域的重要性毋庸置疑[1],被公认为21世纪支撑高新技术发展的重要资源。我国和世界上许多国家均已把“石墨”作为关键性矿产,其矿产勘查和成矿理论研究的重要性不言自明。中国是石墨资源大国,已探明的天然石墨储量约为5500万t,占全球的42%,而四川独占其7.71%[2]。同德石墨矿地处我国六个石墨资源基地之一的四川省攀枝花市,探获推断资源矿石量超过6000万t,矿石产于康定岩群冷竹关组变质地层中,为区域变质型石墨矿床。该矿床发现较早,但前期因开采技术条件及地质勘查投入等未引起足够重视,前人仅对其地质特征、物探异常等进行过简要描述[3-4],认为其是沉积变质型矿床,对矿床的岩石地球化学特征和年代学等方面的研究资料相对匮乏。随着近年来对该矿床地质勘查基金的投入,笔者在大量野外地质调查、成矿地质特征和成矿条件综合分析的基础上,以该矿床矿石和赋矿白云石英片岩为研究对象,对同德石墨矿床的全岩地球化学、碳同位素及Re-Os同位素年代学开展研究,进一步探讨矿床成因,以期为攀枝花地区乃至全国范围内同类型石墨矿床成矿作用研究提供新的证据和思路。

    同德石墨矿区出露的区域地层主要为古元古界康定岩群冷竹关组、中元古界盐边群、新元古界震旦系、古生界寒武系、泥盆系、二叠系地层。大地构造位置位于扬子克拉通上扬子陆块康定-攀枝花基底杂岩带上叠攀西裂谷雅砻江基底杂岩带[5],地处扬子板块西缘,西以青藏高原为界,北以秦岭-大别造山带为界(图1)。区域岩浆岩主要包括同德闪长岩体及高家村镁铁质-超镁铁质岩体,二者均为新元古代岩浆活动的产物[6],北部临近区域还发育关刀山闪长岩体[7]

    图  1  (a)扬子地块西缘康滇地区地质示意图;(b)中国大陆主要构造单元示意图[8]
    Figure  1.  (a) Geological sketch map of the Kang-Dian region, western margin of the Yangtze Block and (b) Sketch map of the main tectonic units of China’s mainland[8]

    矿区出露的地层主要包括:康定岩群冷竹关组、震旦系列古六组、观音崖组、灯影组(图2)。其中,康定岩群冷竹关组云母片岩为同德石墨矿的主要赋矿地层。冷竹关组上段为赋矿地层,为一套由斜长白云母石英片岩、斜长黑云母石英片岩等组成的中-深变质岩。区内构造主要为近南北及近东西向的断层构造。根据野外地质观察,大型构造对成矿无明显控制作用。岩浆岩主要为石英闪长岩,岩石呈灰白色,具细-中粒半自形粒状结构,似片麻状及块状构造。

    图  2  攀枝花同德区域地质简图[9]
    1. 冲洪积;2. 昔格达组;3. 峨眉山玄武岩;4. 二叠系下统;5. 泥盆系中上统;6. 泥盆系中统;7. 寒武系下统;8. 震旦系上统灯影组;9. 灯影组一段;10. 观音崖组二段;11. 观音崖组一段;12. 列古六组;13. 盐边群渔门组;14. 康定岩群冷竹关组上段;15. 太古界天宝寨组;16. 辉长岩;17. 基性-超基性岩;18. 超基性岩;19. 石英闪长岩;20. 闪长岩;21. 辉长闪长岩;22. 辉绿岩;23. 辉长岩;24. 花岗岩脉;25. 逆断层;26. 正断层;27. 地质界线;28. 平行不整合界线;29. 石墨矿体;30. 石墨矿床;31. 山峰;32. 研究区范围;33. 矿段范围
    Figure  2.  Regional geological map of Panzhihua Tongde[9]

    根据矿体分布范围,划分3个矿段,分别为管家箐矿段、芭蕉箐矿段、大麦地矿段,主要矿体分布在管家箐及芭蕉箐矿段,即Ⅰ、Ⅱ、Ⅲ、Ⅷ矿体(图3a)。矿体主要呈层状、似层状赋存于冷竹关组,大致沿北西~南东向分布,沿走向扭曲,倾向60~130°,倾角平均68°,控制长度1740 m,最大倾深330 m,平均厚度11.49 m,固定碳平均品位7.32%(图3b)。含矿母岩为斜长白云母石英片岩,顶底板岩性均为云母石英片岩。矿石类型主要为白云石英片岩型,其次二云石英片岩型。矿石一般呈深黑色,以鳞片粒状变晶结构、片状构造为主。矿石中的石墨、白云母、黑云母多呈鳞片状,大部分定向排列分布,含量30%~35%;石英变晶呈它形粒状,含量50%~55%。手标本上石墨呈灰黑色,新鲜面为钢灰色,金属光泽,污手,多数矿物呈片状半定向-定向排列,整体顺片理方向排列,镜下片状矿物白云母、黑云母、石墨沿一定方向断续定向排列,粒状矿物石英与之不太均匀相间分布,构成片状构造。矿石矿物主要为石墨,脉石矿物主要为石英、白云母、黑云母、斜长石及黄铁矿、针铁矿等(图4c、d)。

    图  3  (a)同德石墨矿区管家箐-芭蕉箐矿段 (b)P0勘探线剖面
    1. 观音崖组;2. 列古六组;3. 康定岩群冷竹关组上段;4. 石英闪长岩;5. 断层;6. 地质界线;7. 不整合界线;8. 勘探线;9. 石墨矿体
    Figure  3.  (a) Guanjiaqing-Bajiaoqing ore block (b) P0 exploration line of Tongde graphite mining area
    图  4  矿石的结构、构造及镜下石墨赋存形态
    a. 深部工程钻探岩心;b. 片状构造矿石;c. 白云母石英片岩型石墨矿中石墨断断续续沿一定方向不均匀呈带状定向分布,磁铁矿与针铁矿呈他形粒状;d. 白云石英片岩型石墨矿中石墨呈板状,沿一定方向均匀定向分布,磁铁矿呈他形-半自形板状、粒状,与石墨沿同一方向零星定向分布;石墨-Gph;磁铁矿-Mt;针铁矿-Gt
    Figure  4.  Structure and structure of ore and occurrence form of graphite under microscope

    全岩地球化学分析测试样品采自矿区中部硝洞湾和芭蕉箐矿段,岩性为云母石英片岩型石墨矿石和围岩白云石英片岩,Re-Os定年和碳同位素分析样品均采自硝洞湾矿段的云母石英片岩型石墨矿石。

    主量、微量及稀土元素分析测试在四川省地质矿产勘查开发局西昌地矿检测中心完成,岩石主量元素数据通过X-射线荧光光谱法、电感耦合等离子体质谱法、电感耦合等离子发射光谱法、分光光度法、容量法和重量法测定;微量元素和稀土元素采用等离子体质谱法(ICP-MS)测定,应用Geokit软件进行数据处理[10]

    Re-Os分析测试由南京聚谱检测科技有限公司完成,将矿石样品碎至0.25~0.38 mm,然后在双目显微镜下将杂质剔除,使纯度达到99%以上,最后将纯净的石墨矿碎至0.074 mm。Re-Os同位素测试用ELAN DRC-e ICP-MS完成。实验方法参照Qi等[11],分析步骤大致如下:称取0.1 g样品于卡洛斯管中,加入185Re和190Os稀释剂,用逆王水在200℃下分解12 h,开管后在水浴中用原位蒸馏法蒸馏Os,Os用3 mL水吸收;将蒸馏后的溶液在烧杯中蒸干,转化为2 mol/L的HCl介质,用阴离子交换树脂AG1-X8分析Re最后定容至3 mL,用ICP-MS测定,相对标准偏差(SD%)小于3%。

    碳同位素分析测试由中国冶金地质总局山东局测试中心完成,测试方法及流程为:将样品研磨至0.074 mm,105℃烘烤样品去除吸附水。样品管在70℃的制样设备中烘烤30 min之后将样品放入样品管中并封盖,用高纯氦气将样品管中的空气排出。用酸泵酸针向样品管中加过量的100%磷酸,磷酸与碳酸盐样品反应8 h以上,反应产生CO2气体。用高纯氦气将生成的CO2气体带入MAT253质谱仪测试C同位素组成。用参考气对其比对测试,测量结果记为δ13CV-PDB(精度优于0.1‰)。先用参考气对样品及参考物质进行初步定值,最后采用GBW 04416、GBW 04417两个标准进行双标准校正,并给出样品的校正值。

    同德石墨矿石、白云石英片岩的主量、微量元素分析结果见表1

    表  1  主量(%)、微量和稀土元素(×10-6)分析结果
    Table  1.  Whole-rock major elements(%),trace elements and REE data(×10-6) from graphite ore in Tongde Graphite Deposit
    测试项目石墨矿云母石英片岩
    TD-7TD-8TD-9TD-10TD-11TD-15TD-16TD-17
    SiO261.6855.6555.8357.4258.1359.5563.4556.10
    Al2O313.3311.3612.1612.0710.7215.4014.1715.28
    Fe2O33.612.713.583.973.552.091.121.69
    FeO2.512.682.052.431.803.945.115.87
    CaO2.696.983.575.454.437.834.044.45
    MgO2.542.481.191.330.642.983.524.22
    K2O2.221.571.782.291.911.321.831.87
    Na2O1.280.510.640.560.451.652.392.16
    TiO20.370.430.210.300.230.680.630.97
    P2O50.450.331.240.471.140.250.150.24
    MnO0.140.350.110.130.350.190.220.15
    V2O50.060.050.100.070.230.020.020.03
    Mn0.110.270.080.100.270.150.170.12
    烧失量8.4813.3013.7012.2613.662.903.003.30
    合计99.4798.6796.2498.8597.5198.9699.8296.46
    固定碳3.733.328.785.618.540.530.170.33
    A/CNK1.580.781.820.981.280.861.091.16
    A/NK2.964.484.083.553.823.722.402.74
    SiO2/Al2O34.634.904.594.765.423.874.483.67
    N2O+K2O3.502.082.422.852.362.974.224.03
    K2O/N2O1.733.082.784.094.240.800.770.87
    CaO/MgO1.062.813.004.106.922.631.151.05
    Rb72.560.261.478.966.553.468.671.7
    Ba12001000170013002400630740670
    Th9.7211.3914.998.689.796.458.796.99
    U3.372.783.874.796.641.611.251.72
    Nb7.869.797.066.686.507.598.8010.8
    Ta0.7500.8200.6100.5500.5100.5600.7100.780
    Sr240270350150370630370380
    Zr270321279255280221244259
    Hf4.474.714.384.264.524.284.243.77
    Cr154136147125187118124130
    Co32.229.731.228.941.624.32227.2
    Ni23518534218253633.355.457.9
    Ni/Co7.306.2310.966.3012.881.372.522.13
    Rb/Sr0.3000.2200.1800.5300.1800.0800.1900.190
    Sr/Ba0.2000.2700.2100.1200.1501.0000.5000.570
    U/Th0.3500.2400.2600.5500.6800.2500.1400.250
    La31.935.048.434.545.026.523.328.1
    Ce52.358.175.855.860.944.035.449.9
    Pr7.357.7710.727.819.576.135.196.64
    Nd30.932.74532.440.125.822.128.8
    Sm6.246.719.146.547.995.34.646.11
    Eu1.341.472.271.461.891.681.261.68
    Gd5.626.488.365.937.954.814.425.54
    Tb0.881.061.260.961.260.780.740.88
    Dy5.106.407.065.627.904.724.555.16
    Ho1.051.381.411.181.740.991.011.08
    Er2.803.803.563.124.802.702.812.91
    Tm0.4600.6200.5500.5000.7700.4400.4900.480
    Yb2.783.963.373.174.782.93.293.01
    Lu0.4100.5900.5100.4700.7200.4400.5300.470
    Y36.749.452.941.273.931.932.433.7
    ΣREE149.13166.04217.41159.46195.37127.19109.73140.76
    LREE130.0141.8191.3138.5165.5109.491.9121.2
    HREE19.124.2926.0820.9529.9217.7817.8419.53
    LREE/HREE6.815.847.346.615.536.155.156.21
    (La/Yb)N8.236.3410.37.816.756.555.086.70
    δEu0.6900.6800.7900.7200.7201.0200.8500.880
    δCe0.8400.8600.8200.8300.7200.8500.7900.900
    下载: 导出CSV 
    | 显示表格

    石墨矿石和白云石英片岩的SiO2含量分别为55.65%~61.68%和56.10~63.45%,平均值分别为7.74%和59.70%;Al2O3含量分别为10.72%~3.33%和14.17%~15.40%,平均值分别为11.93%和4.95%,低于上地壳平均值15.2%;SiO2/Al2O3比值分别为4.59~5.42和3.67~4.48,平均值分别为4.86和4.01,与杂砂岩、砂质黏土岩类似[12];Fe2O3分别为2.71%~3.97%和1.12%~2.09%,平均值分别为3.48%和1.63%,低于上地壳平均值4.5%;FeO分别为1.80%~2.68%和3.94%~5.87%,平均值分别为2.29%和4.97%;K2O分别为1.57%~2.29%和1.32%~1.87%,平均值分别为1.95%和1.67%,低于上地壳平均值3.4%;Na2O分别为0.45%~1.28%和1.65%~2.39%,平均值分别为0.69%和2.07%,低于上地壳平均值3.9%;K2O/Na2O比值分别为1.73~4.24和0.77~0.87,平均值为3.19和0.81,石墨矿石表现为富K贫Na的特点。CaO分别为2.69%~6.98%和4.04%~7.83%,平均值分别4.62%和5.44%;MgO分别为0.64%~2.54%和2.98%~4.22%,平均值分别为1.64%和3.57%;CaO/MgO比值分别为1.06~6.92和1.05~2.63,平均值分别为3.58和1.61。

    石墨矿石大离子亲石元素K亏损,Ba、Rb、Sr较富集,Sr/Ba比值0.12~0.27,平均值0.19,白云石英片岩Rb含量为53.4×10-6~71.7×10-6,平均值为64.57×10-6,Sr/Ba比值0.50~1.0,平均值0.69,二者较低的Sr/Ba比值反映了原岩物质来源具有陆源碎屑沉积特征,即以陆源物质为主[13]。石墨矿石Rb/Sr比值0.18~0.53,平均值为0.28,Rb/Sr比值明显大于Sr/Ba比值,显示近海陆源碎屑物的特征[14],而白云石英片岩Rb/Sr比值0.08~0.19,平均值为0.15。矿石和白云石英片岩的Co含量分别为28.90×10-6~41.60×10-6和22.0×10-6~27.2×10-6,平均值分别为32.72×10-6和24.5×10-6,Ni含量分别为182.0×10-6~536.0×10-6和33.3×10-6~57.9×10-6,平均值分别为296.0×10-6和48.87×10-6,Ni/Co比值6.23~12.88,平均值为8.73,Ni/Co比值大于7代表极贫氧-厌氧环境[15],研究区矿石的Ni/Co平均比值为8.73,说明原岩沉积环境为极度贫氧-厌氧环境,高场强元素除Ta外,Nb、Zr、Hf、Th、U等含量较高且较稳定,反映出高场强元素受重矿物控制。白云石英片岩Th含量为6.45×10-6~8.79×10-6,平均值为7.41×10-6,U含量为1.25×10-6~1.72×10-6,平均值为1.53×10-6。原始地幔标准化微量元素蛛网图(图5a)呈右倾趋势,矿石亏损K、P、Ti等元素,K元素明显亏损,表明样品可能偏基性,P的亏损则反映了沉积岩原岩的特征。白云石英片岩Cr含量为118×10-6~130×10-6,平均值为124×10-6,Hf、Th、U和Ta含量分别为3.77×10-6~4.28×10-6(平均值4.10×10-6)、6.45×10-6~8.79×10-6(平均值7.41×10-6)、1.25×10-6~1.72×10-6(平均值1.56×10-6)、0.56×10-6~0.78×10-6(平均值0.68×10-6),由此可以看出高场强元素含量的变化范围较小,表明这些元素的地球化学性质相对比较稳定,受到变质作用影响较小(图5a)。球粒陨石标准化稀土元素配分曲线呈左高右低(图5b),并且呈现了几乎平行的特征,表明稀土含量的变化大致同步。从表2中可以看出,矿石ΣREE为149.13×10-6~195.37×10-6,平均为177.48×10-6,介于泥质岩石和碳酸盐岩之间,与砂岩稀土总量特征相近[16],LREE范围为130.03×10-6~191.33×10-6,平均值为154.41×10-6,HREE范围为19.10×10-6~29.92×10-6,平均值为24.07×10-6,LREE/HREE比值为5.53~7.34,平均为6.43,LaN/YbN比值6.34~10.30,平均值为7.89,表明轻重稀土分异分明显。矿石δCe值介于0.72~0.86,平均为0.81,变化范围不大,呈轻微负异常,δEu值介于0.68~0.79,平均为0.72,呈负异常,代表了缺氧的海相的生物或化学沉积环境[17]。白云石英片岩稀土配分曲线与石墨矿石近似,其ΣREE为109.73×10-6~140.76×10-6,平均为125.89×10-6,LREE含量91.89×10-6~121.23×10-6,平均值为107.51×10-6;HREE含量17.78×10-6~19.53×10-6,平均值为18.38×10-6;LREE/HREE比值为5.15~6.21,平均值为5.84且LaN/YbN比值为5.08~6.70,平均值为6.11,表明REE的分异程度较高,轻稀土较重稀土富集(图5b);δEu变化范围为0.85~1.02,平均值为0.92,表现为轻微的负Eu异常;δCe变化范围为0.79~0.90,平均值为0.85,表现为Ce负异常,说明原岩可能形成于缺氧的海洋生物或化学沉积物中[18]

    图  5  (a)同德石墨矿矿石、白云母石英片岩微量元素原始地幔标准化蛛网图 (b)稀土元素球粒陨石标准化配分图[19]
    Figure  5.  (a) Primitive mantle-normalized trace element patterns (b) Chondrite-normalized REE patterns of graphite ore, muscovite quartz schistin Tongde[19]
    表  2  同德石墨矿石墨矿石Re-Os同位素数据
    Table  2.  Re-Os isotope data of graphite from Tongde graphite deposit
    样品编号样品质量(g)Re/(ng·g-1)普Os/(ng·g-1)187Re/(ng·g-1)187Os(ng·g-1)187Re/188Os187Os/188Os模式年龄/Ma
    测定值测定值测定值测定值测定值测定值测定值
    TD-10.504979.810.361.490.1649.960.230.8340.014252.77.64.3720.03499317
    TD-20.525651.920.682.160.4732.500.430.5670.070112.93.42.1030.0151038128
    TD-30.497927.660.210.590.0317.310.130.2780.008222.56.73.9130.05795828
    TD-40.503852.600.711.490.1332.920.440.5990.055166.45.03.1010.032108198
    TD-50.516752.800.791.650.1833.060.490.5880.019150.24.52.9490.025105833
    TD-60.507938.850.520.520.0324.320.320.4100.018350.510.56.0480.047100343
    下载: 导出CSV 
    | 显示表格

    同德石墨矿床中6个石墨矿样品的Re-Os同位素分析结果见表2。样品中Re的含量为介于27.66×10-9~79.81×10-9,普通Os含量为0.52×10-9~2.16×10-9、放射性187Os含量为0.28×10-9~0.83×10-9187Re/188Os比值为122.9~350.5。利用ISOPLOT软件[20]得出石墨矿的Re-Os的等时线年龄为983±72 Ma(MSWD=1.7)(图6a),Os同位素初始比值187Os/188Os=0.31±0.21,模式年龄加权平均值为998±36 Ma(MSWD=1.3)(图6b)。

    图  6  (a)同德石墨矿石墨样品Re-Os等时线年龄(b)加权平均年龄
    Figure  6.  (a) Re-Os isochron age (b) Weighted average of age of Re-Os isotope for graphite of Tongde graphite deposit

    碳同位素结果显示同德石墨矿中固定碳的δ13CV-PDB= -25.0‰~-23.5‰,平均值为-24.55‰, 变化范围很小,与南江坪河、大河坝、黑龙江柳毛以及山东南墅石墨矿床等的δ13CV-PDB测试值接近(表3)。

    表  3  同德石墨矿与同类型矿床碳同位素对比
    Table  3.  Carbon isotope correlation between Tongde graphite deposit and the same type deposits
    矿区编号岩矿名称δ13CV-PDB/‰
    同德TDC-3片岩型石墨-24.9
    TDC-4-24.8
    TDC-5-25.0
    TDC-6-23.5
    中坝[21]ZB-01含晶质石墨大理岩-27.64
    ZB-05晶质石墨片岩-28.22
    ZB-06-28.44
    ZB-07-28.41
    ZB-08-28.01
    大河坝[22]1石墨片岩-21.4
    2-19.5
    3-19.9
    4-19.5
    5含石墨大理岩-19.0
    南江坪河[23]1石墨矿-24.5
    2-22.0
    3大理岩0.60
    41.50
    鸡西柳毛[24]1石墨片岩-21.4
    2-19.9
    3-32.1
    4-20.7
    5-21.3
    6-24.4
    7-16.8
    8-18.9
    9-17.5
    山东南墅[25]1石墨矿-21.2
    2-24.0
    3白云质大理岩0.80
    41.50
    下载: 导出CSV 
    | 显示表格

    石墨矿等富有机质的定年一直具有极大的挑战,前人利用Re-Os同位素体系对黑色页岩、炭质泥岩等富有机质沉积岩进行了精准的沉积年龄测定[26-27],但针对富含有机质沉积岩变质形成的石墨矿床进行的Re-Os相关报道却较少,如加拿大萨斯喀彻温省的Wollaston Mudjatik剪切带和坦桑尼亚的Merelani Hills[28]。本文测得的Re-Os同位素结果,获得了较好的Re-Os同位素等时线,石墨矿Re-Os等时线年龄为983±72 Ma(MSWD=1.7)(图6a),Os同位素初始比值187Os/188Os=0.31±0.21。6件Re-Os样品的模式年龄介于993~1058 Ma,加权平均年龄为998±36 Ma(MSWD=1.3)(图6b),二者在误差允许范围内基本一致。

    同德石墨矿床位于扬子板块西缘,前人对其基底采用了不同的方法进行测年,但是随着针对下部结晶基底大量定年数据的涌现,发现结晶基底形成时代为新元古代[29]。刘文中[30]对该同德地区的麻粒岩的锆石U-Pb年龄测定结果为844±12 Ma,与代表麻粒岩角闪岩相退变质作用时代的角闪石40Ar/39Ar平均年龄(827±12)Ma[31]接近。同德石墨矿Os同位素初始比值为0.32±0.21,明显低于上述富含有机质的地层中Os初始比值的理论值。样品的Re、Os含量相对于地壳显著富集[32],甚至高于一般黑色岩系样品中的Re、Os含量[33],说明在石墨形成过程伴有Re和Os的富集,如此高的Re、Os含量也暗示了石墨矿形成时可能处在较强的还原环境中[34]

    碳同位素分析一直以来是研究石墨矿物质来源的重要手段,关于石墨矿碳质究竟是有机碳源还是无机碳源为主一直以来争议不断。黑龙江鸡西柳毛石墨矿、四川中坝石墨矿等碳质均来源于有机物[21,35],另一部分学者认为碳酸盐岩变质形成大理岩时会析出大量的CO2,以及岩浆活动带来的含碳组分,如CO2、CH4等经氧化还原作用变质结晶同样可以形成石墨[35]。同德石墨矿石中碳同位素δ13CV-PDB与国内各地不同时代有机质δ13CV-PDB的平均值接近,落入生物成因的有机碳范围内(图7),显示石墨矿中的碳主要来自有机物。

    图  7  同德石墨矿和其他石墨矿石墨碳同位素特征对比[36]
    Figure  7.  Carbon isotope composition from graphite deposit of Tongde and other regions[36]

    恢复变质岩的原岩类型对于探讨变质石墨矿床的形成环境及规律具有重要意义。利用高场强元素Zr、Ti、Ni化学稳定性较强,不易受变质、蚀变等过程的影响的特点进行w(Zr)/w(TiO2)-w(Ni)投图[37],同德石墨矿石和白云石英片岩均落入沉积岩区(图8),指示含矿岩石为副变质岩。通过对主微量和稀土元素石墨矿石及白云石英片岩的分析,δCe变化范围为0.79~0.90,平均值为0.85,表现为Ce负异常,表明原岩形成于海洋沉积环境,矿石的Ni/Co比值6.23~12.88,平均值为8.73,指示矿区石墨矿原岩沉积属缺氧还原环境[38]。矿石Sr/Ba比值为0.12~0.27(平均0.2),远小于0.6,指示矿体可能沉积于微咸水相[39],因此,同德石墨矿形成于缺氧条件下的滨浅海环境。

    图  8  石墨矿石与白云石英片岩w(Zr)/w(TiO2)-w(Ni)[37]
    Figure  8.  w(Zr)/w(TiO2)-w(Ni) diagram of graphite ore, muscovite quartz schistin Tongde[37]

    研究区位于扬子板块西缘,构造活动强烈,经历多期次区域性构造运动,原构成康定岩群的沉积-火山岩类岩石在此期间发生多期次变质变形,使得岩石发生片理化、糜棱岩化,矿源层中的含碳物质逐渐富集,形成了碳质核晶,伴随着新元古代岩浆活动,石墨鳞片不断重结晶、富集,形成石墨矿床。根据野外工作及室内综合整理研究,结合前人资料,本文提出同德石墨矿床成矿过程主要分为以下2个阶段。

    1)沉积成岩:古元古代时期,区内地壳升降频繁,攀西地区为浅海、滨海沉积建造[40],在此期间,同德一带沉积形成了富含碳质、有机质的赋矿地层-康定岩群冷竹关组。

    2)区域变质:晋宁运动初期,沉积地层中的碳质在区域变质作用和强烈的构造挤压作用下转化为隐晶质石墨或小鳞片石墨,形成石墨核晶,多期次区域变质与动力变质作用叠加,富含有机质部分逐渐转变形成中-大鳞片石墨矿床。

    (1)同德石墨矿床矿石ΣREE为149.13×10-6~195.37×10-6,轻稀土元素较富集。富K贫Na,相对富集Rb、Ba、Sr等大离子亲石元素元素,但K、P、Ti等相对亏损,δEu与δCe均小于1,显示为负异常,代表了缺氧的海相生物/化学沉积环境,Nb、Ta、Zr、Hf等高场强元素富集,反映出矿石的原岩主要来源于陆源碎屑物质。

    (2)石墨矿石Re-Os测年结果为983±72 Ma,早于同德地区新元古代岩浆侵入时代,时代归属为新元古代早期,石墨矿石中Re、Os含量高相对于地壳丰度显著富集,较低的Os同位素初始比值暗示同德地区侵入岩体可能对同德石墨矿床迁移重结晶产生了一定程度的影响。

    (3)同德石墨矿赋存于康定岩群冷竹关组片岩中,碳同位素δ13CV-PDB= -25.0‰~-23.5‰,表明成矿碳质主要来源于有机物,通过对石墨矿石和白云石英片岩的地球化学分析及原岩恢复,研究区赋矿岩石原岩主为副变质岩,形成于缺氧的滨浅海还原环境。

  • 图  1   (a)扬子地块西缘康滇地区地质示意图;(b)中国大陆主要构造单元示意图[8]

    Figure  1.   (a) Geological sketch map of the Kang-Dian region, western margin of the Yangtze Block and (b) Sketch map of the main tectonic units of China’s mainland[8]

    图  2   攀枝花同德区域地质简图[9]

    1. 冲洪积;2. 昔格达组;3. 峨眉山玄武岩;4. 二叠系下统;5. 泥盆系中上统;6. 泥盆系中统;7. 寒武系下统;8. 震旦系上统灯影组;9. 灯影组一段;10. 观音崖组二段;11. 观音崖组一段;12. 列古六组;13. 盐边群渔门组;14. 康定岩群冷竹关组上段;15. 太古界天宝寨组;16. 辉长岩;17. 基性-超基性岩;18. 超基性岩;19. 石英闪长岩;20. 闪长岩;21. 辉长闪长岩;22. 辉绿岩;23. 辉长岩;24. 花岗岩脉;25. 逆断层;26. 正断层;27. 地质界线;28. 平行不整合界线;29. 石墨矿体;30. 石墨矿床;31. 山峰;32. 研究区范围;33. 矿段范围

    Figure  2.   Regional geological map of Panzhihua Tongde[9]

    图  3   (a)同德石墨矿区管家箐-芭蕉箐矿段 (b)P0勘探线剖面

    1. 观音崖组;2. 列古六组;3. 康定岩群冷竹关组上段;4. 石英闪长岩;5. 断层;6. 地质界线;7. 不整合界线;8. 勘探线;9. 石墨矿体

    Figure  3.   (a) Guanjiaqing-Bajiaoqing ore block (b) P0 exploration line of Tongde graphite mining area

    图  4   矿石的结构、构造及镜下石墨赋存形态

    a. 深部工程钻探岩心;b. 片状构造矿石;c. 白云母石英片岩型石墨矿中石墨断断续续沿一定方向不均匀呈带状定向分布,磁铁矿与针铁矿呈他形粒状;d. 白云石英片岩型石墨矿中石墨呈板状,沿一定方向均匀定向分布,磁铁矿呈他形-半自形板状、粒状,与石墨沿同一方向零星定向分布;石墨-Gph;磁铁矿-Mt;针铁矿-Gt

    Figure  4.   Structure and structure of ore and occurrence form of graphite under microscope

    图  5   (a)同德石墨矿矿石、白云母石英片岩微量元素原始地幔标准化蛛网图 (b)稀土元素球粒陨石标准化配分图[19]

    Figure  5.   (a) Primitive mantle-normalized trace element patterns (b) Chondrite-normalized REE patterns of graphite ore, muscovite quartz schistin Tongde[19]

    图  6   (a)同德石墨矿石墨样品Re-Os等时线年龄(b)加权平均年龄

    Figure  6.   (a) Re-Os isochron age (b) Weighted average of age of Re-Os isotope for graphite of Tongde graphite deposit

    图  7   同德石墨矿和其他石墨矿石墨碳同位素特征对比[36]

    Figure  7.   Carbon isotope composition from graphite deposit of Tongde and other regions[36]

    图  8   石墨矿石与白云石英片岩w(Zr)/w(TiO2)-w(Ni)[37]

    Figure  8.   w(Zr)/w(TiO2)-w(Ni) diagram of graphite ore, muscovite quartz schistin Tongde[37]

    表  1   主量(%)、微量和稀土元素(×10-6)分析结果

    Table  1   Whole-rock major elements(%),trace elements and REE data(×10-6) from graphite ore in Tongde Graphite Deposit

    测试项目石墨矿云母石英片岩
    TD-7TD-8TD-9TD-10TD-11TD-15TD-16TD-17
    SiO261.6855.6555.8357.4258.1359.5563.4556.10
    Al2O313.3311.3612.1612.0710.7215.4014.1715.28
    Fe2O33.612.713.583.973.552.091.121.69
    FeO2.512.682.052.431.803.945.115.87
    CaO2.696.983.575.454.437.834.044.45
    MgO2.542.481.191.330.642.983.524.22
    K2O2.221.571.782.291.911.321.831.87
    Na2O1.280.510.640.560.451.652.392.16
    TiO20.370.430.210.300.230.680.630.97
    P2O50.450.331.240.471.140.250.150.24
    MnO0.140.350.110.130.350.190.220.15
    V2O50.060.050.100.070.230.020.020.03
    Mn0.110.270.080.100.270.150.170.12
    烧失量8.4813.3013.7012.2613.662.903.003.30
    合计99.4798.6796.2498.8597.5198.9699.8296.46
    固定碳3.733.328.785.618.540.530.170.33
    A/CNK1.580.781.820.981.280.861.091.16
    A/NK2.964.484.083.553.823.722.402.74
    SiO2/Al2O34.634.904.594.765.423.874.483.67
    N2O+K2O3.502.082.422.852.362.974.224.03
    K2O/N2O1.733.082.784.094.240.800.770.87
    CaO/MgO1.062.813.004.106.922.631.151.05
    Rb72.560.261.478.966.553.468.671.7
    Ba12001000170013002400630740670
    Th9.7211.3914.998.689.796.458.796.99
    U3.372.783.874.796.641.611.251.72
    Nb7.869.797.066.686.507.598.8010.8
    Ta0.7500.8200.6100.5500.5100.5600.7100.780
    Sr240270350150370630370380
    Zr270321279255280221244259
    Hf4.474.714.384.264.524.284.243.77
    Cr154136147125187118124130
    Co32.229.731.228.941.624.32227.2
    Ni23518534218253633.355.457.9
    Ni/Co7.306.2310.966.3012.881.372.522.13
    Rb/Sr0.3000.2200.1800.5300.1800.0800.1900.190
    Sr/Ba0.2000.2700.2100.1200.1501.0000.5000.570
    U/Th0.3500.2400.2600.5500.6800.2500.1400.250
    La31.935.048.434.545.026.523.328.1
    Ce52.358.175.855.860.944.035.449.9
    Pr7.357.7710.727.819.576.135.196.64
    Nd30.932.74532.440.125.822.128.8
    Sm6.246.719.146.547.995.34.646.11
    Eu1.341.472.271.461.891.681.261.68
    Gd5.626.488.365.937.954.814.425.54
    Tb0.881.061.260.961.260.780.740.88
    Dy5.106.407.065.627.904.724.555.16
    Ho1.051.381.411.181.740.991.011.08
    Er2.803.803.563.124.802.702.812.91
    Tm0.4600.6200.5500.5000.7700.4400.4900.480
    Yb2.783.963.373.174.782.93.293.01
    Lu0.4100.5900.5100.4700.7200.4400.5300.470
    Y36.749.452.941.273.931.932.433.7
    ΣREE149.13166.04217.41159.46195.37127.19109.73140.76
    LREE130.0141.8191.3138.5165.5109.491.9121.2
    HREE19.124.2926.0820.9529.9217.7817.8419.53
    LREE/HREE6.815.847.346.615.536.155.156.21
    (La/Yb)N8.236.3410.37.816.756.555.086.70
    δEu0.6900.6800.7900.7200.7201.0200.8500.880
    δCe0.8400.8600.8200.8300.7200.8500.7900.900
    下载: 导出CSV

    表  2   同德石墨矿石墨矿石Re-Os同位素数据

    Table  2   Re-Os isotope data of graphite from Tongde graphite deposit

    样品编号样品质量(g)Re/(ng·g-1)普Os/(ng·g-1)187Re/(ng·g-1)187Os(ng·g-1)187Re/188Os187Os/188Os模式年龄/Ma
    测定值测定值测定值测定值测定值测定值测定值
    TD-10.504979.810.361.490.1649.960.230.8340.014252.77.64.3720.03499317
    TD-20.525651.920.682.160.4732.500.430.5670.070112.93.42.1030.0151038128
    TD-30.497927.660.210.590.0317.310.130.2780.008222.56.73.9130.05795828
    TD-40.503852.600.711.490.1332.920.440.5990.055166.45.03.1010.032108198
    TD-50.516752.800.791.650.1833.060.490.5880.019150.24.52.9490.025105833
    TD-60.507938.850.520.520.0324.320.320.4100.018350.510.56.0480.047100343
    下载: 导出CSV

    表  3   同德石墨矿与同类型矿床碳同位素对比

    Table  3   Carbon isotope correlation between Tongde graphite deposit and the same type deposits

    矿区编号岩矿名称δ13CV-PDB/‰
    同德TDC-3片岩型石墨-24.9
    TDC-4-24.8
    TDC-5-25.0
    TDC-6-23.5
    中坝[21]ZB-01含晶质石墨大理岩-27.64
    ZB-05晶质石墨片岩-28.22
    ZB-06-28.44
    ZB-07-28.41
    ZB-08-28.01
    大河坝[22]1石墨片岩-21.4
    2-19.5
    3-19.9
    4-19.5
    5含石墨大理岩-19.0
    南江坪河[23]1石墨矿-24.5
    2-22.0
    3大理岩0.60
    41.50
    鸡西柳毛[24]1石墨片岩-21.4
    2-19.9
    3-32.1
    4-20.7
    5-21.3
    6-24.4
    7-16.8
    8-18.9
    9-17.5
    山东南墅[25]1石墨矿-21.2
    2-24.0
    3白云质大理岩0.80
    41.50
    下载: 导出CSV
  • [1] 高照国, 刘红召, 杨卉芃, 等. 世界石墨资源分布概况及供求变化趋势[J]. 矿产综合利用, 2018(3):26-29. doi: 10.3969/j.issn.1000-6532.2018.03.004

    GAO Z G, LIU H Z, YANG H P, et al. General distribution and demand-supply tendency for worldwide graphite resources[J]. Multipurpose Utilization of Mineral Resources, 2018(3):26-29. doi: 10.3969/j.issn.1000-6532.2018.03.004

    [2] 李超, 王登红, 赵鸿, 等, 中国石墨矿成矿规律概要[J]. 矿床地质, 2015(6): 1223-1236.

    LI C, WANG D H, ZHAO H, et al. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 2015, 34(6): 1223-1236.

    [3] 黎广, 马源. 自然电位法在四川攀枝花晶质石墨找矿中的应用[J]. 中国非金属矿工业导刊, 2019(A1):93-95. doi: 10.3969/j.issn.1007-9386.2019.z1.017

    LI G, MA Y. Application of spontaneous potential method in prospecting for crystalline graphite in Panzhihua, Sichuan[J]. China Non-metallic Minerals Industry, 2019(A1):93-95. doi: 10.3969/j.issn.1007-9386.2019.z1.017

    [4] 冯锋, 王光洪, 彭召强, 等. 四川省攀枝花市仁和区新民石墨矿矿床成因及成矿规律探讨[J]. 四川地质学报, 2021, 41(2):226-230.

    FENG F, WANG G H, PENG Z Q, et al. Genesis and metallogeny of the Xinmin graphite deposit in Renhe District, Panzhihua, Sichuan[J]. Acta Geologica Sichuan, 2021, 41(2):226-230.

    [5] 罗改, 王全伟, 秦宇龙, 等. 四川省大地构造单元划分及其基本特征[J]. 沉积与特提斯地质, 2021, 41(4):633-647. doi: 10.19826/j.cnki.1009-3850.2021.04002

    LUO G, WANG Q W, QIN Y L, et al. Divisions and their basic characteristics of tectonic units in Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(4):633-647. doi: 10.19826/j.cnki.1009-3850.2021.04002

    [6] 刘益. 扬子地块西缘高家村杂岩体岩石成因与成矿潜力研究[D]. 北京: 中国地质大学(北京), 2018: 1-119.

    LIU Y. The petrogenesis and mineralization potential of Gaojiacun complex, in western maigin of the Yangtze Block, China[D]. Beijing: China University of Geosciences, 2018: 1-119.

    [7]

    Du L L, Guo J H, Allen P N, et al. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subductionat~860 Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton[J]. Lithos, 2014, 196-197:67-82. doi: 10.1016/j.lithos.2014.03.002

    [8]

    Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U–Pb zircon geochronological and geochemical evidence for Late Proterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196:51-67. doi: 10.1016/S0012-821X(01)00595-7

    [9] 纪相田等. 同德幅G47E008023-1/5万地质图说明书[DS]. 全国地质资料馆, 1999.

    JI X T, et al. Tongde G47E008023-1/50000 geological map description[DS] National Geological Data Center, 1999.

    [10] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

    LU Y F. Geokit-ageochemical toolkit for microsoft excel[J]. Geochimica, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

    [11]

    QI L, ZHOU M F, GAO J F, et al. An improved Carius tube technique for determination of low concentrations of Re and Os in pyrites[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(4):585-589. doi: 10.1039/b919016c

    [12]

    Roser B P, Korsch R J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand[J]. Geological Magazine, 1999, 136:493-512. doi: 10.1017/S0016756899003003

    [13] 史会娟. 辽宁省北镇市石墨矿地质地球化学特征及原岩恢复[D]. 北京: 中国地质大学(北京), 2015.

    SHI H J. Geoehemical fcaturcs and protolith Restoration of Beizhen City graphite mine in Liaoning Province[D]. Beijing: China University of Geosciences (Beijing ), 2015.

    [14] 蔡文春, 曾忠诚, 宋曙光, 等. 陕西商南湘河晶质石墨矿床地质特征与成因探讨[J]. 西北地质, 2020, 53(3):220-232.

    CAI W C, ZENG Z C, SONG S G, et al. Geological characteristics and genesis of the Xianghe crystalline graphite deposit in Shangnan County of Shaanxi Province[J]. Northwestern Geology, 2020, 53(3):220-232.

    [15] 柴广路, 李双应. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J]. 地学前缘, 2016, 23(4):29-45.

    CAI G L, LI S Y. Geochemical characteristics and geological implications for the metamorphic rocks of Foziling Group in Eastern of North Huaiyang Tectonic Belt[J]. Earth Science Frontiers, 2016, 23(4):29-45.

    [16] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999(2):63-66. doi: 10.3321/j.issn:1001-8166.1999.02.010

    YANG S Y, LI C X. Research Progress in REE Tracer for Sediment source[J]. Advances in earth science, 1999(2):63-66. doi: 10.3321/j.issn:1001-8166.1999.02.010

    [17] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987.

    LIU Y J, CAO L M. An introduction to element geochemistry[M]. Beijing: Geological Publishing House, 1987.

    [18] 陈有炘, 裴先治, 李瑞保, 等. 东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义[J]. 现代地质, 2014, 28(3):489-500. doi: 10.3969/j.issn.1000-8527.2014.03.005

    CHEN Y X, PEI X Z, LI R B, et al. Geochemical Characteristics and Tectonic Significance of Meta-sedimentary Rocks from Naij Tal Group, Eastern Section of East Kunlun[J]. Geoscience, 2014, 28(3):489-500. doi: 10.3969/j.issn.1000-8527.2014.03.005

    [19]

    Sun S S, McDonough W F. Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes. In: Saunders A D, Norry M J (eDs. ), Magmatism in the Ocean Basins[J]. Geological Society of London Special Publications, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [20]

    Ludwig K. Isoplot /Ex, Version 3.0: A geochronological tool kit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2001:43.

    [21] 夏锦胜, 孙莉, 肖克炎, 等. 四川省中坝晶质石墨矿床地球化学特征及成因分析[J]. 现代地质, 2019, 33(6):1286-1294. doi: 10.19657/j.geoscience.1000-8527.2019.06.14

    XIA J S, SUN L, XIAO K Y, et al. Geochemical features and genesis snalysis of the Zhongba scaly graphite deposit in Sichuan Province[J]. Geoscience, 2019, 33(6):1286-1294. doi: 10.19657/j.geoscience.1000-8527.2019.06.14

    [22] 段威, 唐文春, 黎龙昌, 等. 四川旺苍大河坝浅变质岩型石墨矿床地球化学特征与成因分析[J]. 现代地质, 2021, 35(3):599-607.

    DUAN W, TANG W C, LI L C, et al. Geochemical characteristics and genesis analysis of daheba epimetamorphic graphite deposit in Wangchang, Sichuan Province[J]. Geoscience, 2021, 35(3):599-607.

    [23] 马志鑫, 罗茂金, 刘喜停, 等. 四川南江坪河石墨矿炭质来源及成矿机制[J]. 地质科技情报, 2018, 37(3):134-139. doi: 10.19509/j.cnki.dzkq.2018.0318

    MA Z X, LUO M J, LIU X T, et al. Carbon source and metallogenic mechanism of Pinghe graphite deposit at Nanjiang, Sichuan Province[J]. Geological Science and Technology Information, 2018, 37(3):134-139. doi: 10.19509/j.cnki.dzkq.2018.0318

    [24] 李光辉, 黄永卫, 吴润堂, 等. 鸡西柳毛石墨矿碳质来源及铀、钒的富集机制[J]. 世界地质, 2008, 27(1):19-22. doi: 10.3969/j.issn.1004-5589.2008.01.004

    LI G H, HUANG Y W, WU R T, et al. Origin of carbon and concentration of uranium and vanadium from Liumao graphite formation in Jixi[J]. Global Geology, 2008, 27(1):19-22. doi: 10.3969/j.issn.1004-5589.2008.01.004

    [25] 于方, 魏绮英. 中国典型矿床[M]. 北京: 北京大学出版社, 1997.

    YU F, WEI Q Y. Typical deposits in China[M]. Beijing: Peking University Press, 1997

    [26]

    Hannah J L, SteinHJ, ZimmermanA, et al. Precise 2004±9 Ma Re–Os age for Pechenga black shale: Comparison of sulfides and organic material[J]. Geochimica et Cosmochimica Acta, 2006, 70:A228.

    [27] 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2):251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116

    LI X W, LI C, ZHOU L M, et al. Accurate determination of the age of the carbonaceous mudstone of the ordovician—silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in Paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2):251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116

    [28]

    Toma J, Creaser R A, Card C, et al. Re-Os systematics and chronology of graphite[J]. Geochimica et Cosmochimica Acta, 2022, 323:164-182. doi: 10.1016/j.gca.2022.02.012

    [29] 耿元生, 杨崇辉, 王新社, 等. 扬子地台西缘结晶基底的时代[J]. 高校地质学报, 2007, 13(3):429-441. doi: 10.3969/j.issn.1006-7493.2007.03.012

    GENG Y S, YANG C H, WANG X S, et al. Age of crystalline basement in Western Margin of Yangtze Terrane[J]. Geological Journal of China Universities, 2007, 13(3):429-441. doi: 10.3969/j.issn.1006-7493.2007.03.012

    [30] 刘文中. 攀西元古代麻粒岩的地质年代学与下地壳折返运动轨迹[D]. 南京: 南京大学, 2004.

    LIU W Z. Geochronology of Proterozoic granulites and the lower crust exhumation in Panzhihua-Xichang region[D]. Nanjing: Nanjing university, 2004.

    [31] 徐士进, 刘文中, 王汝成, 等. 攀西微古陆块的变质演化与地壳抬升史-中基性麻粒岩的Sm-Nd, (40)Ar/~(39)Ar和FT年龄证据[J]. 中国科学(D辑:地球科学), 2004, 47(8):689-703.

    XU S J, LIU W Z, WANG R C, et al. The history of crustal uplift and metamorphic evolution of Panzhihua-Xichang micropalaeoland, SW China: Constraints on Sm-Nd, 40Ar/39Ar and FT ages of granulit es[J]. Science in China(Series D), 2004, 47(8):689-703.

    [32]

    Esser B K, Turekian Karl K. The osmium isotopic composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1993, 57(13):3093-3104. doi: 10.1016/0016-7037(93)90296-9

    [33]

    Hannah J L, Bekker A, Stein H J, et al. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 2004, 225(1-2):43-52. doi: 10.1016/j.jpgl.2004.06.013

    [34]

    Ravizza G, Turekian K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53:3257-3262. doi: 10.1016/0016-7037(89)90105-1

    [35] 龙涛. 黑龙江省鸡西市柳毛石墨矿床地球化学特征及其成因分析[D]. 北京: 中国地质大学(北京), 2016.

    LONG T. The geochemical characteristics and deposit genesis analysis of Liu Mao graphite deposit in Ji Xi County of Hei Long jiang Province[D]. Beijing: China University of Geosciences, 2016.

    [36] 朱建江, 刘福来, 刘福兴, 等. 胶-辽-吉造山带辽河群石墨矿碳同位素特征及成因分析[J]. 岩石学报, 2021, 37(2):599-618. doi: 10.18654/1000-0569/2021.02.17

    ZHU J J, LIU F L, LIU F X, et al. Carbon isotope and genesis studies of graphite deposits in the Liaohe Group of the Jiao-Liao-Ji Orogenic Belt[J]. Acta Petrologica Sinica, 2021, 37(2):599-618. doi: 10.18654/1000-0569/2021.02.17

    [37] 王仁民, 贺高品, 陈珍珍, 等. 变质岩原岩图解判别法[M]. 北京: 地质出版社, 1986.

    WANG R M, HE G P, CHEN Z Z, et al. Graphic discrimination of metamorphic rocks[M]. Beijing: Geological Publishing House, 1986.

    [38] 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1):72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012

    LIN Z J, CHEN D F, LIU Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletinof Mineralogy, Petrologyand Geochemistey, 2008, 27(1):72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012

    [39] 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版), 1979(2):54-63.

    WANG Y Y, GUO W Y, ZHANG G D. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group(Paleogene), Jin-Hu Depression, Jiangsu Province[J]. Journal of Tongji University(Natural Science), 1979(2):54-63.

    [40] 朱维光. 扬子地块西缘新元古代镁铁质-超镁铁质岩的地球化学特征及其地质背景-以盐边高家村杂岩体和冷水箐101号杂岩体为例[D]. 广州: 中国科学院地球化学研究所, 2004.

    ZHU W G. Geochemical characteristics and tectonic setting of Neoproterozoic mafic-ultramafic rocks in western margin of the Yangtze Carton-exampled by the complex and Lengshuiqing No. 101 complex[D]. Guangzhou: Institute of geochemistry, Chinese Academy of Sciences, 2004: 1-135.

  • 期刊类型引用(2)

    1. 杨伟,夏小洪,刘图强,程龙,谢志远,刘上荣,谭洪旗. 四川大陆槽稀土矿隐爆角砾岩中石英闪长岩的形成时代及其意义. 矿产综合利用. 2025(01): 8-15+29 . 本站查看
    2. 任志丽,秦亚,冯佐海,吴杰,刘诗云,胡乔帆,白玉明,周鹏程. 桂北地区摩天岭韧性剪切带的应变特征及其构造意义. 矿产综合利用. 2025(01): 46-60 . 本站查看

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  36
  • PDF下载量:  38
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-02-24

目录

/

返回文章
返回