• 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊评价数据库来源期刊
  • 世界期刊影响力指数(WJCI)报告
    (2020-2024科技版)收录期刊
  • SCOPUS, DOAJ, EBSCO, Georef,
    JST, CA数据库收录期刊

攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究

李林, 姜涛, 陈超, 张裕书, 周密, 陈泊健

李林, 姜涛, 陈超, 张裕书, 周密, 陈泊健. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.002
引用本文: 李林, 姜涛, 陈超, 张裕书, 周密, 陈泊健. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.002
Li Lin, Jiang Tao, Cheng Chao, Zhang Yushu, Zhou Mi, Chen Bojian. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.002
Citation: Li Lin, Jiang Tao, Cheng Chao, Zhang Yushu, Zhou Mi, Chen Bojian. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(6). DOI: 10.3969/j.issn.1000-6532.2020.06.002

攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究

基金项目: 中国地质调查(DD20189501);国家自然科学基金项目(面上项目,重点项目,重大项目);中央高校基本科研业务费(No.N2025040)

Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings

  • 摘要: 以攀西钒钛磁铁尾矿和废玻璃为主要原料通过高温烧结法制备储水泡沫陶瓷,研究原料配比和发泡剂(SiC)添加量对材料性能的影响。结果表明:随着钒钛磁铁矿尾矿含量的增加,材料的体积密度及抗压强度逐渐增大,平均气孔孔径逐渐减小;当尾矿添加量为50 wt%,材料的体积吸水率出现极值。当SiC添加量为0.3 wt%,材料内部气孔分布均匀,平均孔径约为2.93 mm。最终以50.0 wt%的钒钛磁铁矿尾矿和50.0 wt%的废玻璃为原料,外加3.0 wt%的石英,0.3 wt%的SiC,3.0 wt%的Na3PO4,在1040℃下制得性能最优的储水泡沫陶瓷,材料的体积密度为0.26 g/cm-3、体积吸水率为56.5%和抗压强度为0.68 MPa。采用SEM、XRD等检测手段研究材料的微观形貌及物相组成,结果表明储水泡沫陶瓷内部由三维立体结构组成,有利于储存水分;材料主要物相包括硅灰石、长石、透辉石和钛铁矿。
    Abstract: Herein water-retaining foam ceramics have been successfully fabricated by high-temperature sintering using vanadium-titanium magnetite tailings (VTMT) and waste glass as major raw materials. Meanwhile, the effects of VTMT content and SiC content on the properties of foam ceramics were investigated. The results show that with the increase of the content of VTMT, the bulk density and compressive strength of the material increased, and the average pore size decreased gradually. When the addition amount of VTMT was 50 wt%, the water absorption of the material appeared the extreme value. When the additive amount of SiC was 0.3 wt%, the pores in the material were evenly distributed with an average pore size of approximately 2.93 mm. Finally, the optimum sample was formed from 50.0 wt% VTMT, 50.0 wt% waste glass, 3.0 wt% quartz sand, 0.3 wt% SiC and 3.0 wt% Na3PO4 which sintered at 1040 °C. The obtained samples had a bulk density of 0.26 g/cm3, water absorption of 56.5%, and compressive strength of 0.68 MPa. The microstructure and crystal composition of the material were studied by means of SEM and XRD. The results showed that the water-retaining foam ceramic was composed of a three-dimensional structure, which was favorable for water storage. The main crystals of the material included wollastonite, feldspar, diopside, and ilmenite.
  • [1] 肖立光, 伊晋宏, 崔正旭. 国内外铁尾矿综合利用现状[J]. 吉林建筑工程学院学报, 2010, 27: 22-27.Xiao L G, Yi J H, Cui Z X. Comprehensive utilization of iron tailings at home and abroad [J]. Journal of Jilin Jianzhu University, 2010, 27: 22-27.
    [2] Li L, Jiang T, Chen B J, et al. Overall utilization of vanadium-titanium magnetite tailings to prepare lightweight foam ceramics [J]. Process Process Safety and Environmental protection, 2020, 139: 305-314.
    [3] da Silva F L, Araújo F G S,Teixeira M P, et al. Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic [J]. Ceramics International, 2014, 40: 16085-16089.
    [4] 刘应东, 许丽, 陈超, 等. 攀枝花钒钛磁铁矿尾矿资源及综合利用. 第九届全国成矿理论与找矿方法学术讨论会[C]. 南京:矿物学报, 2019: 403.Liu Y D, Xu L, Chen C, et al. The tailing resources and comprehensive utilization of Panzhihua Vanadium-Titanium magnetite. The 9th National Symposium on Metallogenic Theory and Prospecting Methods [C]. Nanjing: Acta Mineralogica Sinica, 2019: 403.
    [5] 张以河, 胡攀, 张娜, 等. 铁矿废石及尾矿资源综合利用与绿色矿山建设[J]. 资源与产业, 2019, 21: 1-13.Zhang Y H, Hu P, Zhang N, et al. Comprehensive Utilization of iron ore waste and tailings resources and green mine construction [J]. Resources and Industries, 2019, 21: 1-13.
    [6] Liu J, Liu R Z, Zhang Z J, et al. A Bayesian Network-based risk dynamic simulation model for accidental water pollution discharge of mine tailings ponds at watershed-scale [J]. Journal of Environmental Management, 246: 821-831.
    [7] 王其宏, 章晓林, 李康康, 等. 攀枝花某选铁尾矿钛回收工艺[J]. 过程工程学报, 2017, (02): 313-319.Wang Q H, Zhang X L, Li K K, et al. Titanium recovery process of iron tailings in Panzhihua [J]. The Chinese Journal of Process Engineering, 2017, (02): 313-319.
    [8] 刘淑鹏, 张小伟. 我国金属矿山尾矿综合利用现状及对策[J]. 中国资源综合利用, 2020, (03): 75-78.Liu S P, Zhang X W. Present situation and countermeasures of comprehensive utilization of metal mine tailings in China [J]. China Resources Comprehensive Utilization, 2020, (03): 75-78.
    [9] Yan Z D, Feng F Q, Tiao J, et al. Effect of high titanium blast furnace slag on preparing foam glass–ceramics for sound absorption [J]. Journal of Porous Materials, 2019, 26: 1209-1215.
    [10] Chen Z W, Wang H, Ji R, et al. Cheeseman, C., Wang, X.D., 2019. Reuse of mineral wool waste and recycled glass in ceramic foams [J]. Ceramics International, 2019, 45: 15057-15064.
    [11] Xi C P, Zheng F, Xu J H, et al. Preparation of glass-ceramics foam using extracted titanium tailing and glass waste as raw materials [J]. Construction and Building Materials, 2018, 190: 896-909.
    [12] 王艳. 基于低影响开发的海绵城市方案研究及水量模拟[D]. 北京: 清华大学, 2017.Wang Y. Research on the Theory and Application of LID in Sponge City Construction and Simulation Calculation of Water Quantity in Infiltration Ponds [D]. Beijing: Tsinghua university, 2017.
    [13] 王国梅, 徐晓虹, 吴建锋. 高温发泡陶瓷的烧成工艺与性能[J]. 新型建筑材料, 1997, (11): 19-21.Wang G M, Xu X H, Wu J F. Firing technology and properties of high temperature foaming ceramics [J].New Building Materials, 1997, (11): 19-21.
    [14] Avinash G, Harika V, Sandeepika V, et al. Pore size contral in aluminium foam by standardizing bubble rise velocity and metal viscosity [J]. IOP Conference Series: Materials Science and Engineering, 2018, 338: 012010.
    [15] Wang R F, Zhang B, Liu C J, et al. Physical modelling of dynamic evolution of metallurgical slag foaming [J]. Experimental Thermal and Fluid Science, 2020,113: 110041.
计量
  • 文章访问数:  174
  • HTML全文浏览量:  22
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2020-10-25
  • 发布日期:  2020-12-24

目录

    /

    返回文章
    返回