Study on Digestion of Low Grade High Silica Bauxite by Static Roasting
-
摘要: 针对低品位高硅铝土矿溶出性能差,本文采用低温静态焙烧溶出工艺,考查焙烧温度、焙烧时间及矿石粒径对氧化铝溶出效果的影响。其结果表明:矿石含铝主要物相为一水软铝石、一水硬铝,其在焙烧过程中分解温度为515 ℃。经过焙烧后,矿石结构变为疏松孔洞及沟壑结构。在焙烧温度600 ℃、焙烧时间90 s、矿石粒径150 μm条件下,氧化铝相对溶出率最优,较原矿提高7.57%达到了97.88%。焙烧矿氧化铝溶出限制性环节为内扩散,其表观活化能为44.72 kJ/mol。Abstract: Aiming at the problem of poor digestion performance of alumina from low-grade high-silica bauxite, the low-temperature static roasting and digestion process was used to investigate the effects of roasting temperature, roasting time and ore size on the digestion effect of alumina. The results show that the main phases of aluminum in the ore are boehmite and diaspore, and the decomposition temperature during the roasting process is 515 ℃. After roasting, the structure of the ore becomes a porous and gully structure. Under the conditions of roasting temperature of 600 ℃, roasting time of the 90 s, and ore particle size of 150 μm, the relative digestion rate of alumina is the best, which is 7.57% higher than the raw ore to 97.88%. The limiting link of alumina dissolution from calcined ore is internal diffusion, and its apparent activation energy is 44.72 kJ/mol.
-
Key words:
- High silicon /
- Bauxite /
- Roasting /
- Digestion /
- Thermogravimetry
-
表 1 铝土矿化学成分/%
Table 1. Chemical composition of bauxite
Al2O3 TFe2O3 SiO2 TiO2 TS CaO MgO K2O Na2O LOSS 总计 62.83 4.15 16.42 2.37 1.20 0.35 0.26 0.52 0.11 11.23 99.44 表 2 氧化铝溶出率与时间的关系
Table 2. Data of alumina digestion rate versus time
时间/min 原矿氧化铝溶出率% 焙烧矿溶出率% 260 ℃ 270 ℃ 280 ℃ 260 ℃ 270 ℃ 280 ℃ 10 7.865 8.35 9.854 9.85 10.65 11.95 30 38.45 41.03 42.31 36.25 44.32 49.79 45 56.38 58.65 58.35 58.65 63.54 67.17 60 61.97 65.34 67.1 60.35 65.65 71.91 70 66.37 68.34 69.82 63.25 69.08 72.09 -
[1] 吴鸿飞, 夏飞龙, 李军旗, 等. 低品位高硫铝土矿静态焙烧脱硫及溶出性能[J]. 中南大学学报(自然科学版), 2020, 51(5):1163-1173. WU H F, XIA F L, LI J Q, et al. Static roasting desulfurization and dissolution properties of low-grade high-sulfur bauxite[J]. Journal of Central South University(Natural Science Edition), 2020, 51(5):1163-1173. [2] WANG Shiqiang, ZHANG Zhaohui, WANG Zhihui. Bryophyte communities as biomonitors of environmental fact[J]. Science of the Total Environment, 2015, 538:270-278. [3] Guozhi Lu, Tingan Zhang, Fangfang Guo, et al. Clean and efficient utilization of low-grade high-iron sedimentary bauxite via calcification-carbonation method[J]. Hydrometallurgy, 2019, 187. [4] Hong-fei WU, Chao-yi CHEN, Jun-qi LI, et al. Digestion mechanism and crystal simulation of roasted low-grade high-sulfur bauxite[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6):1662-1673. doi: 10.1016/S1003-6326(20)65328-6 [5] WU Y, PAN X L, HAN Y J, et al. Digestion kinetics and removal mechanism of kaolinite in diasporic bauxite in alkali solution at atmospheric pressure[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(12). [6] 高慧, 赵东亮. 石灰质量对拜耳法氧化铝生产过程的影响[J]. 轻金属, 2020(8):24-26. GAO H, ZHAO D L. Influence of lime quality on alumina production process by Bayer process[J]. Light Metals, 2020(8):24-26. doi: 10.13662/j.cnki.qjs.2020.08.006 [7] 刘永轶, 李其贵, 刘战伟. 预脱硅及石灰配比对铝土矿溶出性能的影响[J]. 有色金属(冶炼部分), 2020(6):30-36. LI Y Y, LI Q G, LIU Z W. Effects of pre-desilicization and lime ratio on the dissolution properties of bauxite[J]. Nonferrous Metals (Extractive Metallurgy), 2020(6):30-36. [8] 刘琼霞, 单志强. 广西某铝土矿Bayer-CaO法溶出实验[J]. 矿产综合利用, 2019(3):27-30. LIU Q X, SHAN Z Q. Tests on the Bayer-CaO dissolving method for the bauxite from Guangxi Taiping mining area[J]. Multipurpose Utilization of Mineral Resources, 2019(3):27-30. doi: 10.3969/j.issn.1000-6532.2019.03.006 [9] 刘佳囡, 曹诗圆, 程颖, 等. 铝土矿中铝、铁和硅有价组分的综合利用研究[J]. 矿产综合利用, 2019(4):87-90. LIU J N, CAO S Y, CHENG Y, et al. Research on comprehensive utilization of aluminium, iron and silicon from bauxite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):87-90. doi: 10.3969/j.issn.1000-6532.2019.04.018 [10] 马智敏, 陈兴华, 王玉才, 等. 铝土矿选矿脱硅技术研究现状及前景展望[J]. 矿产综合利用, 2015(1):1-6,13. MA Z M, CHEN X H, WANG Y C, et al. Research status and prospect of bauxite beneficiation and desilication technology[J]. Multipurpose Utilization of Mineral Resources, 2015(1):1-6,13. doi: 10.3969/j.issn.1000-6532.2015.01.001 [11] 吴鸿飞, 夏飞龙, 李军旗, 等. 低品位高硫铝土矿脱硅精矿溶出及微观结构演变[J]. 中南大学学报(自然科学版), 2019, 50(9):2074-2083. WU H F, XIA F L, LI J Q, et al. Dissolution and microstructure evolution of desilication concentrates from low-grade high-sulfur bauxite[J]. Journal of Central South University (Natural Science Edition), 2019, 50(9):2074-2083. [12] 刘学飞, 王庆飞, 张起钻, 等. 广西靖西县新圩铝土矿Ⅶ号矿体矿石热分析[J]. 矿物岩石, 2008, 28(4):53-58. LIU X F, WANG Q F, ZHANG Q Z, et al. Thermal analysis of ore body No. VII in Xinwei Bauxite Mine, Jingxi County, Guangxi[J]. Mineral Rock, 2008, 28(4):53-58. doi: 10.3969/j.issn.1001-6872.2008.04.010 [13] 马冬阳, 张梅, 郭敏. 焙烧对铝土矿尾矿相转变, 失重率及平均粒径与比表面积的影响[J]. 硅酸盐通报, 2014, 33(9):2153-2157. MA D Y, ZHANG M, GUO M. Effects of roasting on phase transformation, weight loss rate, average particle size and specific surface area of bauxite tailings[J]. Bulletin of Silicate, 2014, 33(9):2153-2157. [14] 杨会宾, 涂赣峰, 潘晓林, 等. 高铁三水铝石矿溶出动力学[J]. 有色金属(冶炼部分), 2016(2):18-22. YANG H B, TU G F, PAN X L, et al. Dissolution kinetics of high-speed iron gibbsite ore[J]. Nonferrous Metals (Extractive Metallurgy), 2016(2):18-22. -