Optimization Research about Primary Grinding Medium of Lead-Zinc Ore in Yunnan
-
摘要: 对云南某铅锌矿石测定原矿力学性质、粒度组成并通过磨矿介质的对比实验来解决其一段球磨机处理量偏低、细度不达标、产品粒度组成不合理等问题。实验结果表明,该矿石属于中硬偏软矿石,软硬分布不均匀,容重和韧性都偏高;控制工艺参数与现场接近,磨矿细度为-0.074 mm 65%时效果较佳;采用Φ80mm:Φ60mm:Φ40mm :Φ30mm =20:25:25:30钢球方案能提高磨矿效率和磨矿细度,同时降低过磨粒级含量。Abstract: Mechanical properties and particle size composition of a lead-zinc ore in Yunnan were determined, and the problems such as low processing capacity of a section ball mill, substandard fineness and unreasonable particle size composition were solved through the contrast test of grinding medium. The experimental results show that the ore is medium hard and soft ore, with uneven distribution, and high bulk density and toughness. When the grinding fineness is 65% of -0.074 mm, the best effect is obtained. Plan of Φ80mm:Φ60mm:Φ40mm :Φ30mm =20:25:25:30 would improve grinding efficiency and grinding fineness, at the same time reduce the grinding grade levels.
-
Key words:
- Lead-zinc ore /
- Ball grinding /
- Ball medium
-
表 1 球介质计算
Table 1. Calculation of ball medium
级别/mm 给矿产
率/%扣除-0.15 mm后
待磨产率γ待/%各组适宜
球径/mm推荐
球比-20+5 10.15 20.04 80 20 -5+0.45 12.32 24.32 60 25 -0.45+0.2 12.17 24.03 40 25 -0.2+0.15 16.03 31.64 30 30 -0.15 49.34 —— —— —— 合计 100.00 100.00 —— 100.00 表 2 钢球配比实验方案
Table 2. Plans of ball ratio test
方案 钢球配比 平均球
径/mm方案一 Φ80mm:Φ60mm:Φ40mm=40:30:30 62.0 方案二 Φ80mm:Φ60mm:Φ40mm :Φ30mm =20:25:25:30 50.0 方案三 Φ80mm:Φ70mm:Φ50mm :Φ40mm =20:25:25:30 58.0 方案四 Φ70mm:Φ50mm:Φ40mm :Φ30mm =20:25:25:30 45.5 表 3 原矿力学性质
Table 3. Mechanical property of ore
原矿编号 单轴抗压
强度/MPa弹性模量105/
(kg·cm-2)泊松比 容重t/
(g·cm-3)1 46.3 2.43 0.33 4.35 2 22.0 1.70 0.27 4.33 3 102.0 3.02 0.22 3.52 -
[1] Chen X S, et al. Constrained model predictive control in ball mill grinding process[J]. Powder Technology Lausanne, 2008. [2] 王泽红, 高伟, 刘高峰. 太钢尖山铁矿一段磨机介质优化研究[J]. 金属矿山, 2019, 519(9):107-111. WANG Z H, GAO W, LIU G F. Study on medium optimization of the first stage mill in Jianshan Iron Mine of TIGCO[J]. Metal Mine, 2019, 519(9):107-111. doi: 10.19614/j.cnki.jsks.201909018 [3] 张谦, 肖庆飞, 杨森, 等. 喀拉通克铜镍矿球磨机磨矿作业质量优化试验研究[J]. 矿产综合利用, 2020(4):100-105. ZHANG Q, XIAO Q F, YANG S, et al. Experimental research on quality optimization of ball mills in Kalatonk copper-nickel ore[J]. Multipurpose Utilization of Mineral Resources, 2020(4):100-105. doi: 10.3969/j.issn.1000-6532.2020.04.016 [4] Markstrom S. Commissioning and operation of the AG mills at the aitik expansion project[C]International Autogenous And Semiautogenous Grinding Technology 2011. Canada: The Committee of International Autogenous And Semiantogenous Grinding Technology, 2011: 62-75. [5] 王晨晨, 黄朝德, 付金涛, 等. 青海某铅锌矿磨矿动力学实验研究[J]. 矿产综合利用, 2020(1):59-61. WANG C C, HUANG C D, FU J T, et al. Experimental research on grinding kinetics for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1):59-61. doi: 10.3969/j.issn.1000-6532.2020.01.012 [6] 段希祥, 肖庆飞. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 139—169.DUAN X X, XIAO Q F. Gold Science and Technology [J]. Beijing: Metallurgical Industry Press, 2012: 139-169. [7] 李炼, 戴思行, 王飞洋, 等. 改善赤铁矿磨矿效果的实验探索[J]. 矿产综合利用, 2019(1):61-65. LI L, DAI S X, WANG F Y, et al. Exporing of improving the grinading effects of hematite[J]. Multipurpose Utilization of Mineral Resources, 2019(1):61-65. [8] 郭运鑫, 肖庆飞, 黄胤淇, 等. 提高永平铜矿一段球磨磨矿效率的研究[J]. 矿产综合利用, 2019(4):135-138. GUO Y X, XIAO Q F, HUANG Y Q, et al. Research on raising the efficiency of ball grinding in one section of Yongping copper mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4):135-138. doi: 10.3969/j.issn.1000-6532.2019.04.029 [9] 段希祥. 球磨机钢球尺寸的理论计算研究[J]. 昆明理工大学学报: 自然科学版, 1989(4):9-11. DUAN X X. Theoretical Calculation of Ball Size for Ball Mill[J]. Journal of Kunming University of Science and Technology: Natural Science Edition, 1989(4):9-11. -