Experimental Research on Influencing Factors of High-purity Ferro-Phosphorus and Silicon Thermal Method
-
摘要: 本研究以磷矿石和铁粉为原料,工业硅为还原剂,通过正交实验研究冶炼温度、保温时间、配硅系数对磷铁合金产品中C含量、Ti含量、P含量以及P组分收得率的影响。结果表明:实验所得磷铁合金中C含量均低于0.043%,Ti含量均低于0.036%。各因素对P含量以及P组分收得率的影响程度大小顺序为:配硅系数>冶炼温度>保温时间。电硅热法制备低C低Ti高纯磷铁合金的较佳工艺条件为冶炼温度1390 ℃,保温时间60 min,配硅系数1.2。此条件下磷铁合金成分为C含量0.010%,Ti含量0.036%,P含量27.78%,P组分收得率为96.49%。Abstract: In this study, phosphate rock and iron powder were used as raw materials, and industrial silicon is used as a reducing agent. Through orthogonal experiments, the effects of smelting temperature, holding time and silicon ratio on the carbon content, titanium content, phosphorus content and the recovery rate of phosphorus in ferro-phosphorus alloy products are studied. The results show that the carbon content in ferro-phosphorus alloys obtained in the experiment is less than 0.043%, and the titanium content is less than 0.036%. The order of the degree of influence of various factors on the phosphorus content and the recovery rate of phosphorus from large to small is: silicon ratio, smelting temperature, holding time. The best process conditions for preparing ferro-phosphorus alloy by electro-silicothermic process are smelting temperature of 1390 ℃, holding time of 60 min, and silicon ratio of 1.2. Under these conditions, the ferro-phosphorus alloy has a carbon content of 0.010%, a titanium content of 0.036%, and a phosphorus content of 27.78%. The recovery rate of phosphorus was 96.49%.
-
表 1 磷矿主要化学成分/%
Table 1. Main chemical constituents of phosphate ore
P2O5 MgO Fe2O3 Al2O3 CaO As* Cr* 33.61 1.79 1.06 0.64 48.13 27.7 42.08 表 2 正交实验因素与水平
Table 2. Orthogonal experimental factors and levels
水平 冶炼温度/℃ 保温时间/min 配硅系数 1 1360 30 0.7 2 1390 50 0.9 3 1420 60 1.0 4 1450 80 1.2 表 3 实验合金主要化学成分/%
Table 3. Mainchemical components of test alloy
实验序号 磷铁合金C、Ti、P含量 P C Ti 1 17.38 0.030 <0.01 2 21.25 0.022 <0.01 3 23.71 0.017 <0.01 4 28.08 0.014 0.027 5 21.81 0.010 <0.005 6 17.95 0.011 <0.005 7 27.78 0.010 0.036 8 23.56 0.017 <0.01 9 23.98 0.017 <0.01 10 27.63 0.043 0.032 11 17.20 0.017 <0.005 12 21.78 0.023 <0.005 13 27.63 0.039 0.033 14 23.44 0.0099 <0.01 15 22.06 0.016 <0.005 16 17.01 0.017 <0.01 表 4 P含量极差分析
Table 4. Phosphorus content range analysis
冶炼温度 保温时间 配硅系数 均值1 22.61 22.70 17.39 均值2 22.78 22.57 21.73 均值3 22.65 22.69 23.67 均值4 22.54 22.61 27.78 R 0.24 0.13 10.39 表 5 正交实验方案及P组分收得率
Table 5. Orthogonal experiment scheme and the recovery rate of phosphorus
序号 冶炼温度/℃ 保温时间/min 配硅系数 P收得率/% 1 1360 30 0.7 46.21 2 1360 50 0.9 61.21 3 1360 60 1.0 72.04 4 1360 80 1.2 89.94 5 1390 30 0.9 64.96 6 1390 50 0.7 48.94 7 1390 60 1.2 96.49 8 1390 80 1.0 76.12 9 1420 30 1.0 70.35 10 1420 50 1.2 94.74 11 1420 60 0.7 49.62 12 1420 80 0.9 67.38 13 1450 30 1.2 94.42 14 1450 50 1.0 74.76 15 1450 60 0.9 63.31 16 1450 80 0.7 48.01 K1 269.40 275.94 192.78 K2 286.51 279.65 256.86 K3 282.09 281.46 293.27 K4 280.50 281.45 375.59 均值k1 67.35 68.99 48.20 均值k2 71.63 69.91 64.22 均值k3 70.52 70.37 73.32 均值k4 70.13 70.36 93.90 R 4.24 1.42 45.74 -
[1] 朱晓辉, 邱臻哲, 白倩, 等. 磷化工副产磷铁的利用研究进展[J]. 无机盐工业, 2015, 47(2):6-8. ZHU X H, QIU Z Z, BAI Q, et al. Research Progress on utilization of phosphorus iron, a by-product of phosphorus chemical industry[J]. Inorganic Chemicals Industry, 2015, 47(2):6-8. [2] Tanaka I, Yashiki H. Magnetic properties and recrystallization texture of phosphorus-added non-oriented electrical steel sheets[J]. Journal of Magnetism & Magnetic Materials, 2006, 304(2):611-613. [3] 欧阳页先, 张新仁, 谢晓心. 磷对w(Si)0.4%无取向电工钢磁性能的影响[J]. 钢铁研究, 2009, 37(4):52-55. OUYANG Y X, ZHANG X R, XIE X X. Effect of phosphorus on magnetic properties of W (SI) 0.4% non-oriented electrical steel[J]. Research on Iron and Steel, 2009, 37(4):52-55. [4] 向睿. 新型高B_s铁基非晶/纳米晶合金成分设计与性能研究[D]. 北京: 钢铁研究总院, 2015.XIANG R. Composition design and properties of a new high B_s Fe based amorphous / nanocrystalline alloy [D]. Beijing: Central Iron & Steel Research Institute, 2015. [5] 刘虹利, 张均, 王永卿, 等. 磷矿固体废弃物资源化利用问题及建议[J]. 矿产综合利用, 2017(1):6-11. LIU H L, ZHANG J, WANG Y Q, et al. Problems and suggestions on resource utilization of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2017(1):6-11. doi: 10.3969/j.issn.1000-6532.2017.01.002 [6] 王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15. WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestions of phosphate rock solid waste treatment in Guizhou Province[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003 [7] 裴陈新, 裴英豪, 王立涛. 电工钢中钛的行为研究[J]. 安徽冶金, 2016(2):13-15. PEI C X, PEI Y H, WANG L T. Study on behavior of titanium in electrical steel[J]. Anhui Metallurgy, 2016(2):13-15. [8] 李国峰, 韩跃新, 高鹏, 等. 高磷鲕状赤铁矿深度还原过程中磷在金属相富集热力学研究[J]. 矿产综合利用, 2019(2):152-158. LI G F, HAN Y X, GAO P, etal. Thermodynamic study on phosphorus enrichment in metal phase during deep reduction of high phosphorus oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2019(2):152-158. doi: 10.3969/j.issn.1000-6532.2019.02.032 [9] 白倩. 磷铁真空热分解及磷铁加镍制备金属磷化物[D]. 云南: 云南师范大学, 2016.BAI Q. Preparation of metal phosphide by vacuum thermal decomposition of ferrophosphorus and addition of nickel to ferrophosphorus [D]. Yunnan: Yunnan Normal University, 2016. [10] 赵乃成, 张启轩. 铁合金生产实用技术手册[M]. 北京: 冶金工业出版社, 1998.ZHAO N C, ZHANG Q X. Practical technical manual for ferroalloy production [M]. Beijing: Metallurgical Industry Press, 1998. [11] Cahn R W , Haasen P , Kramer E J . Materials science and technology: a comprehensive treatment[M]. VCH, 1996. -